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Abstract: 33 

 34 

In this paper, we assess the quality of state-of-the-art regional climate information intended to 35 

support climate adaptation decision-making. We use the UK Climate Projections 2018 as an 36 

example of such information. Their probabilistic, global and regional land projections exemplify 37 

some of the key methodologies that are at the forefront of constructing regional climate 38 

information for decision support in adapting to a changing climate. We assess the quality of the 39 

evidence and the methodology used to support their statements about future regional climate 40 

along six quality dimensions: transparency; theory; independence, number and 41 

comprehensiveness of evidence; and historical empirical adequacy. The assessment produced 42 

two major insights. First, a major issue that taints the quality of UKCP18 is the lack of 43 

transparency, which is particularly problematic since the information is directed towards non-44 

expert users who would need to develop technical skills to evaluate the quality and epistemic 45 

reliability of this information. Second, the probabilistic projections are of lower quality than the 46 
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global projections because the former lack both transparency and a theory underpinning the 47 

method used to produce quantified uncertainty estimates about future climate. The assessment 48 

also shows how different dimensions are satisfied depending on the evidence used, the 49 

methodology chosen to analyze the evidence, and the type of statements that are constructed in 50 

the different strands of UKCP18. This research highlights the importance of knowledge quality 51 

assessment of regional climate information that intends to support climate change adaptation 52 

decisions. 53 

 54 

Keywords: 55 

Knowledge Quality Assessment, Regional Climate Information, Climate Models, Uncertainty, 56 

Adaptation  57 
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1. Introduction 58 

 59 

Adapting to a changing climate is an increasingly urgent necessity. Anthropogenic greenhouse 60 

gas emissions have already caused about 1 ºC of global warming, and even for the most 61 

optimistic mitigation scenarios, we are likely committed to 1.5 ºC warming with respect to the 62 

pre-industrial period by 2030-2050 (IPCC 2018). Informing the preparations needed to manage 63 

the risks, limit the damages and take advantage of the opportunities that arise in light of this 64 

changing climate is a grand challenge of climate change science (Moss et al. 2013). 65 

 66 

There is an increasing interest in understanding how to address information needs for climate 67 

change adaptation decisions. For example, Knutti (2019) argues that despite the improvements in 68 

scientific understanding of climate and climate change, we need “more useful knowledge 69 

oriented toward solutions” (p. 22). One of the ways in which physical climate science can 70 

address this is by providing “more local climate information” (p. 22). 71 

 72 

Decadal and multi-decadal regional climate information is increasingly important for making 73 

adaptation decisions and varies in temporal and spatial resolution. However, information about 74 

future changes in regional climate also comes with high degrees of uncertainty – an important 75 

element of the information given the high stakes of climate change adaptation decisions. This 76 

information is usually derived from Global Climate Models (GCMs) and Earth System Models 77 

(ESMs). State of the art modeling techniques are used to explore uncertainties and model 78 

sensitivities with ensemble experiments, dynamical downscaling with regional climate models 79 
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(RCMs), statistical downscaling, and the use of high-resolution convection permitting models 80 

(CPMs).  81 

 82 

However, model-based information is difficult to interpret: the non-stationarity of the system and 83 

the time scales of forward looking model simulations imply that these simulations cannot be 84 

verified or confirmed (Stainforth et al. 2007b), the nature and scope of ensemble experiments is 85 

not clearly defined (Pirtle et al. 2010; Parker 2011; Masson and Knutti 2011; Jebeile and 86 

Crucifix 2020), excessive focus on uncertainty quantification risks being misleading (Parker and 87 

Risbey 2015), and it is not always clear that there is an escape from “model land”, i.e., 88 

statements from models about models, rather than statements from models about the world 89 

(Thompson and Smith 2019).  90 

 91 

So a legitimate question that can be asked is whether information about future climate derived 92 

from ESMs and other types of evidence does meet the quality standards that are needed to make 93 

decisions about how to adapt to a changing climate. Just because the information is provided, 94 

doesn’t mean it is adequate for the purpose of informing climate change adaptation decisions. 95 

For example, Fiedler et al. (2021) argue that rules need to be developed to evaluate the reliability 96 

of climate information for decision support in the private sector. 97 

 98 

To assess the quality of regional climate information for decision making, we apply a slight 99 

modification of the quality assessment framework of Baldissera Pacchetti et al. (2021). In that 100 

paper quality is specified along five dimensions for statements or estimates about future climate: 101 

transparency, theory, diversity and completeness, and adequacy for purpose. We slightly modify 102 
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these dimensions in two ways. First, we break down diversity and completeness into: number, 103 

independence and comprehensiveness to more clearly capture the way the typology of evidence 104 

and its analysis bear on statements about future climate. Second, we change “adequacy for 105 

purpose” to “historical empirical adequacy” to more clearly specify this dimension and 106 

differentiate it from more general notions of adequacy for purpose (e.g., Parker 2020). These 107 

dimensions are designed to assess the epistemic reliability of statements about future climate, 108 

which requires that the information and related probabilities suitably represent the likelihood of 109 

different realizations of future climate, and that there is an explanation of why this is the case.  110 

 111 

The aims of this paper are twofold. First, to assess the quality of state-of-the-art information 112 

about future regional climate intended to inform adaptation decisions using the UK Climate 113 

Projections 2018 (UKCP18) as a case study. We consider what is needed to achieve higher 114 

quality to inform future efforts in constructing regional climate information. Second, this study 115 

serves as an empirical test for the quality framework itself.  116 

 117 

We start by describing the modified framework in Section 2. Here, we describe “quality” in the 118 

context of providing information for decision support. We specify the target of the framework in 119 

terms of the elements of information about future regional climate which need to be taken into 120 

consideration for a meaningful assessment. In Section 3, we motivate the choice of UKCP18 as 121 

an exemplar of state-of-the-art regional climate information and assess the quality of three 122 

products of the land projections according to the framework of Baldissera Pacchetti et al. (2021). 123 

In Section 4 we discuss the findings of the assessment. We conclude with future research 124 

directions in Section 5. 125 



 
 

7 
 

UNDER REVIEW – DO NOT SHARE, CITE OR QUOTE WITHOUT PERMISSION OF THE AUTHORS 

 126 

2. The framework 127 

 128 

The framework introduced by Baldissera Pacchetti et al. (2021) specifies what is meant by 129 

quality in the context of informing climate change adaptation decisions. In particular, this 130 

framework focuses on the epistemic requirements of a concept of quality in this context. These 131 

epistemic requirements can provide guidance on what it means for information to be credible 132 

enough to be decision-relevant. Credibility refers to the scientific adequacy of the technical 133 

details and arguments used as evidence for the information (Cash et al. 2003). 134 

 135 

For information to be of high quality, it needs to be epistemically reliable, i.e., the information 136 

about future climate and related probabilities need to suitably represent the likelihood of 137 

different realizations of future climate, and there needs to be an explanation of why this is the 138 

case. This understanding of reliability becomes important when statistical-empirical evaluations 139 

of reliability are not available to scientists, as is the case for long term climate predictions and 140 

projections (see, e.g., Winsberg 2006, Stainforth et al. 2007a, Stainforth et al. 2007b, Baldissera 141 

Pacchetti 2020). Epistemic reliability is also important when connecting model-based statements 142 

about models to model-based statements about the real world (see Thompson and Smith 2019).  143 

 144 

The target of the framework is information in the form of “statements or estimates about future 145 

regional climate”,1 on decadal and longer time scales, that are produced by scientific research 146 

(Baldissera Pacchetti et al. 2021, p. 477). Beyond the statements themselves there are two further 147 

 
1 We will use estimate or statement as appropriate to the context, but our discussion is relevant for both. 
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aspects that need to be taken into consideration: the evidence underpinning the statements and 148 

the methodology used to analyze this evidence. 149 

 150 

Baldissera Pacchetti et al. (2021) identify five dimensions along which quality can be assessed: 151 

transparency, theory, diversity, completeness and adequacy for purpose. Transparency requires 152 

that both the evidence and methodology be accessible enough for the other quality dimensions to 153 

be assessed, even by non-experts. Theory refers to the strength of the theoretical foundations for 154 

the statement about future climate; it covers both physical processes and methodological 155 

approaches to the data. This dimension is particularly important for giving epistemic reliability 156 

and is recognized to some extent in recent process-based model evaluations (Daron et al. 2019; 157 

Jack et al. 2021). Diversity and completeness track different but related aspects of how evidence 158 

is sourced and combined. For clarity, these two dimensions have been further divided into three 159 

sub-dimensions: Independence, Number and Comprehensiveness (see Table 1). Independence 160 

tracks the extent to which different types of evidence can be considered independent. Types of 161 

evidence can, for example, be ESM or GCM models that share model genealogy and any 162 

derivative thereof (e.g., emulators), theoretical process-based understanding, expert judgment, 163 

observations, paleoclimatic data (see also Fig. 1 in Baldissera Pacchetti et al. 2021). 164 

Independence can be assessed by evaluating the provenance of the evidence such as model 165 

genealogy and overlapping modeling assumptions, training and background of scientists chosen 166 

for expert elicitation, geographical location of research activity, etc. Number tracks how many of 167 

these different types are taken into account. Comprehensiveness tracks whether each type of 168 

evidence is exhaustively assessed, i.e. whether model space is sufficiently explored, whether 169 

enough of the relevant experts are consulted, or whether all plausible physical theories are taken 170 
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into consideration. These three sub-dimensions contribute to an exhaustive uncertainty 171 

assessment – an important component of policy-relevant statements about future climate.  172 

 173 

Adequacy for purpose, in general, is invoked to highlight that model evaluation should take 174 

account of the purpose for which a model is being used (Parker 2020). In the present case, the 175 

purpose of statements about future climate is to inform decision making, and to achieve this 176 

requires epistemic reliability. To more clearly specify what can be assessed as adequate in the 177 

context of this purpose, we call this dimension historical empirical adequacy. This dimension 178 

refers to the empirical adequacy of the model evaluation for the stated purpose of the output 179 

(e.g., has model output been compared with historical observations for each variable of interest 180 

at the relevant spatial and temporal scales, etc.).  181 

 182 

Score Qualifier Transparency Theory Diversity and Completeness Historical 
Empirical 
Adequacy Independe

nce 
Number Comprehen

siveness 
0 Not satisfied No access No theoretical 

support that 
warrants X. 
Or 
Can’t assess. 

Only one 
type of 
evidence is 
taken into 
consideratio
n to justify 
X. 
Or 
Can’t assess 

No 
(scientific) 
evidence is 
taken into 
considerati
on. 
Or 
Can’t 
assess 

No 
exploration of 
uncertainty 
within 
individual 
lines of 
evidence. 
Or 
Can’t assess 

No empirical 
tests (e.g. 
hincasts) for 
X. 
Or  
Can’t assess 

1 Minimally 
satisfied 

Evidence and 
Methodology 
are mentioned 
but not well 
explained and 
not 
appropriately 
traceable. 

Weak 
theoretical 
support that 
warrants X. 
(theoretical 
underpinning is 
weak, and 
doesn’t justify 
the precision of 
X) 

There is 
considerable 
overlap 
among the 
evidence.  

Few of the 
available 
lines of 
evidence 
are taken 
into 
account. 

Minimal 
exploration of 
uncertainty 
within 
individual 
lines of 
evidence. 

Empirical 
tests are 
performed 
but only of 
few 
components 
relevant to 
X. 

2 Somewhat 
satisfied 

Evidence and 
methodology are 
somewhat 
accessible and 
traceable, but 
there are gaps. 

Medium 
theoretical 
support that 
warrants X. 

The 
evidence 
overlaps 
somewhat. 

Multiple, 
but not 
most 
available 
lines of 
evidence 
are taken 

Partial 
exploration of 
uncertainty 
within 
individual 
lines of 
evidence. 

Empirical 
tests are 
performed 
but not for 
all 
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into 
account. 

components2 
relevant to 
X. 

3 Generally 
satisfied 

Evidence and 
methodology are 
well-explained, 
and all evidence 
is traceable. 

Strong 
theoretical 
support that 
warrants X. 

There is 
little overlap 
among 
sources of 
evidence.  

Most 
available 
lines of 
evidence 
are taken 
into 
account. 

Sufficient 
exploration of 
uncertainty 
within 
individual 
lines of 
evidence. 

Extensive 
empirical 
tests are 
performed 
for all 
components 
relevant to 
X. 

4 Satisfied Evidence and 
methodology are 
well-explained, 
and all evidence 
is immediately 
available.  

Theory 
unequivocally 
justifies X. 

Completely 
independent 
types of 
evidence are 
taken into 
account.  

All 
possible 
lines of 
evidence 
are taken 
into 
account. 

Comprehensi
ve exploration 
of uncertainty 
within 
individual 
lines of 
evidence. 

All possible 
empirical 
tests for all 
components 
relevant to 
X. 

 183 

Table 1 Qualitative descriptors for each quality dimension across a quantitative scale (0-4). 184 

 185 

Table 1 provides qualitative descriptors for each quality dimension across a quantitative scale, 186 

and how various dimensions can be satisfied. These dimensions are not to be considered 187 

“necessary and sufficient conditions” for quality, and there is no absolute scale along which they 188 

can be assessed. The last row represents an in practice unattainable ideal, that can nevertheless 189 

provide guidance on how to achieve high quality information. In practice, the degree to which 190 

each dimension should or can be satisfied is influenced by the kind of statement under 191 

consideration and also the relation of the dimensions to one another (Baldissera Pacchetti et al. 192 

2021, p. 488). 193 

 194 

The order in which the above dimensions are presented is not prescriptive but highlights the 195 

relation between the dimensions. Transparency is assessed first because it provides an 196 

explanation for why other dimensions may not be satisfied if there is no access to relevant 197 

 
2 Components: model output for variable(s) of interest at the relevant spatial and temporal scale.  
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evidence and methodology for the estimate or statement under assessment. Theory follows 198 

transparency because the theoretical support for an estimate or statement can guide the extent to 199 

which diversity and completeness need to be satisfied: the stronger and more established the 200 

theoretical support, the less important diversity and completeness are for epistemic reliability. 201 

Finally, historical empirical adequacy is a minimal empirical requirement for epistemic 202 

reliability.  203 

 204 

3. The assessment 205 

 206 

The UKCP18 projections exemplify key characteristics of state-of-the-art information about 207 

future regional climate. Here we assess to what extent different strands of the UKCP18 land 208 

projections (Murphy et al. 2018) satisfy the quality dimensions of the framework. The 209 

probabilistic projections combine multi-model-ensembles (MME) and perturbed-physics-210 

ensembles (PPE) to provide a probabilistic estimate of the uncertainties tied to future changes in 211 

regional climate. The global projections provide model-derived trajectories for future climate 212 

which aim to sample a broad range of possible future responses to anthropogenic forcing 213 

(Murphy et al. 2018, p. 38). The regional projections include dynamical downscaling using a 214 

PPE of regional climate models (RCM).  215 

 216 

We apply the quality assessment framework to these three strands of UKCP18 and assess how 217 

they satisfy the dimensions of the quality framework. When appropriate, we show whether 218 

quality varies depending on the variable of interest within a particular strand or across strands. 219 

For example, the theory dimension highlights that quality is better satisfied for estimates about 220 
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variables that depend on thermodynamic principles (such as global average temperature) than 221 

fluid dynamical theory (such as regional precipitation) (see, e.g., Risbey and O’Kane 2011) 222 

independently of the strand under assessment. Table 2 provides a summary of the products of the 223 

UKCP18 land projections.  224 

 225 

 Probabilistic projections Global projections Regional 
Projections 

Description Probabilistic changes in future 
climate based on an assessment 
of model uncertainties 

A set of 28 climate futures 
with detailed data on how it 
may evolve in the 21st 
century: 

• 15 x Hadley Centre 
Model variants 
HadGEM-GC3.05 

• 13 x other climate 
models (CMIP5-13) 

A set of 12 high-
resolution climate futures 
over Europe downscaled 
from the global 
projections (PPE-15) 
using Hadley Centre 
model HadREM-
GARA11M 

Period 1961-2100 1900-2100 1981-2080 for 12km 
1981-200, 2021-2040, 
2061-2080 for 2.2km 

Temporal 
resolution 

Monthly 
Seasonal 
Annual 

Daily 
Monthly 
Seasonal 
Annual 

Subdaily for 2.2km 
Daily 
Monthly 
Seasonal 
Annual 

Spatial 
resolution 

25km 60km 12km 
2.2km 

Geographical 
extent 

UK & regions UK & regions 
Global 

UK & regions 
Europe for 12km 

Emission 
scenarios 

RCP2.6 
RCP4.5 
RCP6.0 
RCP8.5 
SRES A1B 

RCP8.5 RCP8.5 

Why should 
you use it? 

Explores emissions scenario 
uncertainty 
 
Explores uncertainty in key 
processes in climate models 
 
Helps characterize future 
extremes in risk assessment 

Long time series 
 
Spatially and temporally 
coherent 
 
Direct access to “raw” climate 
model data 
 

Enhanced spatial detail 
 
Spatially and temporally 
coherent 
 
Improved extremes 
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Met Office Hadley Centre 
global climate model 
HadGEM3-GC3.05 

Direct access to “raw” 
climate model data 

 226 

Table 2. Summary of UKCP18 Land Projections (adapted from Fung et al. 2018, pp.3-4) 227 

 228 

3.1 Probabilistic Projections 229 

 230 

The probabilistic projections provide probabilistic estimates for potential future climate over the 231 

UK, based on an assessment of model uncertainties (Murphy et al. 2018). 232 

 233 

Transparency 234 

  235 

The probabilities can be interpreted as an outcome of the methodology used. The authors of 236 

UKCP18 say that “the available models are sufficiently skillful that the conditional probabilistic 237 

projections…provide useful advice about known uncertainties in future changes” (Murphy et al. 238 

2018, p. 10) but recognize that “systematic errors represent an important but unavoidable caveat” 239 

(Murphy et al. 2018, p. 10). Furthermore, they warn the user that the probabilities do not reflect 240 

the confidence the scientists have in the strength of the evidence (see, e.g., Murphy et al. 2018, p. 241 

9). This implies that the probabilities do not provide a measure of what can be concluded from 242 

the evidence. 243 

 244 

These statements do not clarify how to interpret the usefulness of the information provided. If the 245 

uncertainty ranges do not represent the possible ranges of future climate but rather are 246 

conditional on the particular methodology and the evidence used, what are the consequences for 247 



 
 

14 
 

UNDER REVIEW – DO NOT SHARE, CITE OR QUOTE WITHOUT PERMISSION OF THE AUTHORS 

the statements about future climate? A non-expert user would probably not be able to use this 248 

information to assess the consequences for the epistemic reliability of the probabilistic estimates 249 

and therefore for the suitability of the information for their particular purpose.  250 

 251 

The decision-relevance of the information and the expertise required by a user to assess the 252 

epistemic reliability of the uncertainty estimates are not clarified by the additional available 253 

documents. For example, consider the following:  254 

 255 

“We have designed the probabilistic projections to provide the primary tool for assessments of 256 

the ranges of uncertainties in UKCP18. However, they may not capture all possible future 257 

outcomes.” (Fung et al. 2018, p. 3) 258 

 259 

“The future probabilistic projections in UKCP18 are an update of those produced for UKCP09. 260 

You should interpret the probabilities as being an indication of how much the evidence from 261 

models and observations taken together in our methodology support a particular future climate 262 

outcome. […] The relative probabilities indicate how strongly the evidence from models and 263 

observations, taken together in our methodology, support alternative future climate outcomes.” 264 

(Ibid.) 265 

 266 

These statements show that the evaluation of the merits of a complex methodology is left to the 267 

user to decipher. It is unclear how a user who is not an expert in uncertainty assessments could 268 

assess the extent to which these estimates are suitable for their purposes. So, while the 269 

availability of multiple reports and guidance notes would suggest that the probabilistic 270 
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projections satisfy the transparency dimension, the opacity of the method to derive the 271 

projections and the lack of explanation of how this affects the statements about future climate 272 

indicates that the probabilistic projections only minimally satisfy this dimension (score: 1). In 273 

order to score higher along this dimension, it should be clearly stated what it means for the 274 

uncertainty ranges to be conditional on the evidence and methodology, and what the 275 

consequences of this conditionality are. For example, it could be specified how much wider the 276 

uncertainty range could be, and what kind of information the probabilistic estimates can provide 277 

– do they represent the degree of belief UKCP18 scientists have regarding future regional 278 

climate? 279 

 280 

Theory 281 

 282 

Theoretical understanding is an important component of climate information for adaptation, and 283 

models do not directly encapsulate all theoretical knowledge (Baldissera Pacchetti et al. 2021). 284 

In order to show how epistemically reliable the results are, model output should be assessed 285 

based on the scientists’ theoretical understanding of climatic processes and the theoretical 286 

justification for how the model output is processed. The theory dimension of the framework does 287 

not only address the process understanding of the underlying mechanisms responsible for 288 

observed and future climate, but also the use of methodology. Here we focus on methodology. 289 

 290 

Murphy et al. (2018) use the Bayesian framework of Goldstein and Rougier (2004) to develop 291 

probabilities. The probabilistic projections are mainly constructed by developing three PPEs. 292 

Two of these are updated with observational constraints and combined with an MME obtained 293 
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from CMIP5 “to achieve a combined sampling of parametric and structural uncertainties in 294 

physical and carbon cycle responses” (Murphy et al. 2018, p. 13). The model output is then 295 

further downscaled with an RCM PPE to produce the projections at the 25km resolution. There 296 

are several issues with this methodology. 297 

 298 

While Murphy et al. (2018) state that the probabilities do not reflect their confidence in the 299 

evidence, the probabilities are presented as some kind of knowledge claim about future climate. 300 

The main issue here is that probabilities cannot be interpreted as a measure of likely futures – not 301 

even subjective probabilities as intended by the original methodology introduced by Goldstein 302 

and Rougier (2004)–unless the subjective nature of this approach is made explicit and discussed 303 

in more detail. These probabilities are a quantified measure resulting from the methodology and 304 

the modelling choices, but it is unclear whether they are a measure of uncertainty about future 305 

climate. We further substantiate this claim below. 306 

 307 

Murphy et al. (2018) do not usefully discuss how UKCP18 addresses the issues raised in Frigg et 308 

al. (2015), who argue that the use of the discrepancy term to generate decision-relevant 309 

probabilities is problematic. The use of the discrepancy term rests on the informativeness 310 

assumption, i.e., the assumption that the distance between the model and the truth is small (Frigg 311 

et al. 2015, p. 3993).  312 

 313 

Murphy et al. (2018) assume that the MME from CMIP5 can be an adequate proxy to estimate 314 

this distance, but CMIP5 output cannot be considered a representative sample of the real world 315 

and thus a good basis for assessing structural model uncertainty. This assumption is flawed 316 
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because of shared assumptions and shared biases of models (see Masson and Knutti 2011; Knutti 317 

et al. 2013; and the discussion in Baldissera Pacchetti et al. 2021, p. 481). 318 

 319 

While these criticisms are acknowledged in UKCP18, it is not explained how UKCP18 320 

overcomes the consequences for generating decision-relevant knowledge so the concerns over 321 

the informativeness of the discrepancy term identified by Frigg et al. in UKCP09 persist in 322 

UKCP18. Probabilistic estimates would be better justified if supplemented with physical 323 

interpretation of the model output. As we and others have argued elsewhere (Stainforth et al. 324 

2007a; Frigg et al. 2015; Thompson et al. 2016; Baldissera Pacchetti et al. 2021) extrapolatory 325 

inferences can be unreliable for complex, nonlinear systems like the climate system, and certain 326 

methodological assumptions used to produce probabilistic estimates about future regional 327 

climate do not warrant the claims of decision-relevance for the information obtained from these 328 

projections. Further, these estimates cannot be considered to represent subjective credences of a 329 

group of experts, since the authors of the technical report themselves state that “the probabilistic 330 

format should not be misinterpreted as an indication of high confidence in the weight of evidence 331 

behind specific outcomes” (Murphy et al. 2018, p. 9). The probabilistic projections therefore do 332 

not satisfy (score 0) the theory dimension. To improve theory with respect to the methodology, 333 

the subjective nature of these probabilities should be fully embraced, the justification for the 334 

informativeness assumption and its limitations should be described, and alternative 335 

methodologies to aggregate model output should be taken into consideration (e.g. Stainforth et 336 

al. 2007b). 337 

 338 

Diversity and Completeness 339 
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 340 

Diversity and completeness assess some key characteristics of the evidence and how the 341 

evidence is analyzed. These dimensions are subdivided into Independence, Number and 342 

Comprehensiveness, which respectively assess the shared assumptions and origin, the number of 343 

different types of evidence and the extent to which individual types of evidence are explored. 344 

 345 

The main lines of evidence used are an MME, three PPEs (the output of which is augmented 346 

with a statistical emulator), and observational data. To assess the diversity of this evidence, we 347 

discuss the extent to which these sources of evidence are different from one another, and, 348 

relatedly, whether they share substantive assumptions. In addition, expert knowledge is used to 349 

estimate the ranges of the parameters of the PPEs (Murphy et al. 2018, p. 13). However, the 350 

process for extracting the knowledge and the uncertainty implications for the probabilistic 351 

projections are unclear. The UKCP18 science reports (Murphy et al. 2018; Lowe et al. 2018) do 352 

not reveal any other sources of evidence for the probabilistic projections. The lack of a thorough 353 

description of the use of expert judgment to select the parameter ranges is problematic because 354 

the methodology used to process the PPEs was designed as an approach for quantifying expert 355 

knowledge (Goldstein and Rougier 2004). It is unclear however whether Murphy et al. (2018) 356 

intend their methodology to represent expert judgement (or expert knowledge). Besides, it has 357 

been argued that probabilistic expert elicitation can be ambiguous and can underestimate the 358 

uncertainty associated with the knowledge claims of groups of scientists (Millner et al. 2013). 359 

The consequences of such issues are impossible to assess because the expert judgement aspect of 360 

the approach is not described and indeed is undermined by various caveats (see above and 361 
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Murphy et al. 2018, p. 9). We cannot therefore assess the role expert knowledge plays as a 362 

source of evidence, so the discussion below focuses on model-based and observational evidence. 363 

 364 

Independence is somewhat satisfied (score 2) with respect to model-based and observational 365 

evidence. We consider the MME and PPEs to be one type of evidence. In principle, these 366 

ensembles explore different sources of uncertainty: the MME explores structural uncertainty, 367 

whereas the PPE explores parameter uncertainty. Nevertheless, there is considerable overlap in 368 

the model structure and, consequently, shared biases in model output (Masson and Knutti 2011; 369 

Knutti et al. 2013). However, we can consider observations to be a different type of evidence. 370 

Take the HadCRUT3 dataset (Brohan et al. 2006) used for temperature as an example. This 371 

dataset is evaluated with reanalaysis data but the overlap in model-based assumptions is not 372 

considerable (Parker 2016). Number is minimally satisfied (score 1) as few types of evidence are 373 

taken into account. Comprehensiveness is somewhat satisfied (score 2) with respect to model-374 

based and observational evidence: structural model uncertainties are explored with a large MME 375 

by today’s standards and the uncertainties regarding the choice of parameters within one of the 376 

models is also on the large side by today’s standards although climateprediction.net 377 

demonstrated that a wider range of behavior can be found with much bigger ensembles 378 

(Stainforth et al. 2005).  379 

 380 

Since the probabilistic projections aim to provide an estimate of uncertainty, there is one more 381 

way in which comprehensiveness should be assessed. Singh and AchutaRao (2020) show that 382 

observational uncertainty can affect estimates of future change, as the assessment of model 383 

performance varies depending on the observational dataset used. This uncertainty may be 384 



 
 

20 
 

UNDER REVIEW – DO NOT SHARE, CITE OR QUOTE WITHOUT PERMISSION OF THE AUTHORS 

minimal for datasets of variables that have an extensive record in space and time and bias may be 385 

easily removed for variables that are well understood–such as temperature. However, this 386 

uncertainty may become severe for other variables of interest and can change depending on the 387 

metric used (Kennedy-Asser et al. 2021), and this difficulty should be explicitly acknowledged 388 

to provide epistemically reliable information.  389 

 390 

In order to improve quality along these dimensions, expert elicitation should be thoroughly 391 

documented, a wider range of models coming from different modeling centers should be taken 392 

into account, and parametric uncertainty should be systematically explored across different 393 

models. Reanalysis data could also be taken from different centers as European and global 394 

reanalysis datasets are produced by several international research centers. This diversity could 395 

help control for some of the idiosyncrasies in modeling assumptions and data processing 396 

methodologies that are tied to each research centre.  397 

 398 

Historical Empirical Adequacy 399 

 400 

Historical empirical adequacy assesses whether statements about future regional climate intended 401 

for climate change adaptation decisions have been subjected to adequate empirical tests. 402 

Empirical adequacy for the variables for which probabilistic estimates are provided is not itself 403 

an indicator that the probabilistic estimates will be epistemically reliable, but if they are not 404 

empirically adequate it is a strong indicator that they won’t be epistemically reliable. In this 405 

sense, empirical adequacy for the purpose of evaluating model behavior for variables of interest 406 

is a minimal requirement for quality. The importance of empirical adequacy for evaluating 407 
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models has been stressed recently by Nissan et al. (2020). The following analysis is based only 408 

on the information that can be accessed.  409 

 410 

The output of the probabilistic projections is assessed and updated mostly by studying anomalies 411 

in key variables. For example, Murphy et al. (2018, Fig. 2.4a, p. 20 and Fig. 2.5, p.25) assess 412 

temperature changes with respect to a chosen baseline period. This evaluation of empirical 413 

adequacy of a model or a group of models does not satisfy historical empirical adequacy. While 414 

anomalies may be useful for supporting a strong inference about the need for mitigation, it does 415 

not adequately support epistemically reliable estimates about future climate for adaptation. We 416 

provide a motivation for this claim below. 417 

 418 

Empirical adequacy with respect to an anomaly is only a measure relative to a chosen baseline, 419 

makes strong implicit assumptions about the linearity of the climate system, and can be achieved 420 

without a good representation of some of the details of the earth system. Take the time series 421 

data of GMST for the 1900-2000 period from CMIP5 alongside a time series of observations 422 

shown in Frigg et al. (2015, p. 3994). While the warming signal appears consistent among model 423 

output, there is considerable difference across models for the absolute value of GMST. As Frigg 424 

et al. (2015, p. 3994) note, these differences–albeit only of a few degrees Celsius–are an 425 

indication that different models represent the earth system differently: the location of sea-ice, 426 

vegetation, etc., varies across models, and so do associated feedbacks. While this may be of less 427 

significance for evaluating the historical empirical adequacy of a global signal of climate change 428 

and related uncertainties, estimating how much temperature will change locally needs to rely on 429 
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an adequate representation of the relevant earth system components, and associated processes 430 

and feedbacks–which is not captured by the empirical adequacy of anomalies.  431 

 432 

This issue is particularly relevant when information is downscaled: heterogeneities across 433 

models in the representation of physical features of the earth system and associated processes 434 

and feedbacks may not matter when model output is averaged globally, but they will be of 435 

crucial importance when evaluating model performance at regional scales (Ekström et al. 2015). 436 

Because of the importance of evaluating historical empirical adequacy for the purpose of 437 

informing decision making in terms of absolute values of the relevant variables, historical 438 

empirical adequacy is not satisfied for the probabilistic projections (score 0). To improve along 439 

this dimension, model performance should be evaluated (and shown to be evaluated) for absolute 440 

values of the variables provided. 441 

 442 

3.2 Global Projections 443 

 444 

The focus of the global projections is on estimates and statements about future climate derived 445 

directly from individual CMIP5 and HadGEM-GC3.05 simulations rather than processed 446 

ensemble output. This also shifts the focus of the quality assessment. These projections aim to 447 

show “how the 21st century climate may evolve under the highest emission scenario RCP8.5” 448 

(Lowe et al. 2018, p. 1). The purpose of these projections is to provide “a multi-variable dataset 449 

for impacts analysis … and [to support the] development of storylines relating to future climate 450 

variability and extremes on a broad range of timescales” (Murphy et al. 2018, p. 35). Further 451 

details about the global projections can be found in Table 2. 452 
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 453 

Transparency 454 

 455 

The global projections provide information on most of the sources of evidence and describe their 456 

methodology, but there are components of the evidence and how the evidence analyzed that are 457 

not accessible or traceable. Again, the user is left to assess certain key features of the quality of 458 

the projections with little support from the UKCP18 documents or user interface.3  459 

 460 

There are various instances where this occurs. For example, as we discuss below, the user is left 461 

to assess which models perform best and what this implies for the epistemic reliability of the 462 

information. Moreover, the UKCP18 user interface does not aid in the evaluation of the 463 

performance of models against observations. Take the time series data for precipitation from the 464 

global projections (Fig. 1). When producing these images through the user interface, one can 465 

highlight up to 5 members of the ensemble, but one cannot distinguish between PPE and CMIP5 466 

members. Furthermore, one cannot compare the model output with observations through the user 467 

interface. Unless the user has the skills to download the relevant data and process it themselves, 468 

they cannot easily assess the historical empirical adequacy dimension.  469 

 470 

 
3 The user interface can be found here: https://ukclimateprojections-ui.metoffice.gov.uk/ui/home  
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 471 

Figure 1. Global Seasonal Projections (30-year average) of precipitation rate anomaly for a 60km 472 

grid point over Leeds in the period 1980-2029. The projections are derived from 15 variants of 473 

HadGEM-GC3.05 and 13 members of CMIP5. Obtained from https://ukclimateprojections-474 

ui.metoffice.gov.uk/ui/home in January 2021. 475 

 476 

Furthermore, while most of the data sources are cited, it is not always clear what kind of data sets 477 

are used at various stages of the projection development process. For example, Murphy et al. 478 

(2018) cite the paper from which they borrow the methodology for model evaluations using 5-479 

day simulations as the source of their data, but that paper only vaguely references the data set 480 

used (Williams et al. 2013, p. 3259). Another example of lack of transparency in the model 481 

development process is the use of expert elicitation in the construction of the PPE. Murphy et al. 482 

(2018) do not specify who the experts are and how they were chosen.  483 
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 484 

These considerations indicate that the global projections somewhat satisfy the transparency 485 

dimension (score: 2). The raw data can be downloaded from the interface, but the user would 486 

need to have high numerical literacy and programming skills to fully trace the model output. To 487 

improve transparency, the origin of the output of the global projections and the data sources used 488 

for the model verification should be fully traceable through the user interface and, ideally, 489 

thoroughly described in the supporting documents.  490 

 491 

Theory 492 

 493 

The description of the theoretical underpinning of how global atmospheric circulation patterns 494 

can affect UK weather is discussed at various stages in relation to the global projections (Murphy 495 

et al. 2018). For example, theoretical understanding of key processes is taken into consideration 496 

when choosing which parameters to perturb in the PPE and when choosing what synoptic system 497 

metrics to use to assess the performance of the simulations. However, the use of theoretical 498 

understanding is not explored in much depth in the science report.  499 

 500 

The overview report of the scientific output (Lowe et al. 2018, p. 35) provides some further 501 

insight into how this theoretical understanding can be used. For instance, theory about large scale 502 

circulation patterns and their effect on local weather is combined with model output to provide 503 

statements about possible future climate over the UK. While this use of theoretical insight 504 

contributes to satisfying the theory dimension of the quality framework, the overview report 505 

exemplifies the use of theory only for pressure; there is no discussion of how it affects 506 
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temperature or other variables. These considerations suggest that the global projections do 507 

somewhat satisfy the theory quality dimension (score 2). To improve quality along this 508 

dimension, there should be better integration between theoretical evaluation of the physical 509 

processes represented by models, and how it bears on the epistemic reliability of model output 510 

for individual variables.  511 

 512 

Diversity and Completeness 513 

 514 

There are several different sources of evidence for the global projections: MME, PPE, expert 515 

elicitation in building the PPEs, reanalysis data and observations (Murphy et al. 2018). As we 516 

have discussed in the evaluation of the probabilistic projections, MME and PPE count as one 517 

type of evidence.  518 

 519 

Model output is derived from both a PPE and an MME. The MME output is similar to the one 520 

used for the probabilistic projections, but the PPE is constructed and forced differently (see 521 

Murphy et al. 2018, Section 3). Model output here is assessed as a source of evidence as it is 522 

used at various stages of the filtering stages to satisfy the principles of “plausibility and 523 

diversity” that drive the projection development process (Murphy et al. 2018, p. 37). 524 

 525 

Expert elicitation follows Sexton et al. (2019), which is itself partly based on the Sheffield 526 

Elicitation Framework (SHELF) method of Oakley and O’Hagan (2010). Expert elicitation is 527 

used to set up the parameter space for the PPE. The parameters and the respective ranges are 528 

elicited from experts following the protocol suggested by SHELF but not using the software. The 529 
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experts were advised “to base their ranges on their own sensitivity analyses, theoretical 530 

understanding, or empirical evidence excluding any knowledge they had of the effects of the 531 

parameters in climate simulations.” (Sexton et al. 2019, p. 995). The experts also provided 532 

guidance on selecting the shape of the distribution.  533 

 534 

Observations are used at various stages of the production process. First, they are used to filter the 535 

PPE to extract the most plausible and diverse set of models. Reanalysis datasets from the 536 

ECMWF are used to assess the short term (5-day) hindcasts (see Williams et al. 2013, p. 3259) 537 

and the Met Office HadISST2 data (Titchner and Rayner 2014) for the longer term (5-year) 538 

simulations (see Murphy et al. 2018, pp. 41-45). Observations are also used to assess how PPE 539 

performs in simulating large scale circulation, like AMOC.  540 

 541 

So, the global projections draw from three different types of evidence, and generally satisfy the 542 

“number” component of diversity and completeness (score: 3). We note that the score of this 543 

component depends on the variable in question. For example, if we assess global projections 544 

about mean temperature, the level of theoretical understanding of thermodynamic response to 545 

GHG concentrations warrants a lower number of types of evidence to achieve the same score as 546 

model derived statements about regional precipitation patterns. 547 

 548 

We can now evaluate the independence and comprehensiveness of the evidence. Independence 549 

cannot be assessed for expert elicitation and model-based evidence, because the origin of the 550 

experts is not disclosed (score 0), but it is generally satisfied for model-based evidence and 551 

observations (score 3). For any variable, the PPE represents a more comprehensive evaluation 552 
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than the MME, because the “plausibility and diversity” principles are applied only for 553 

developing the PPE and not the MME. Nevertheless, both ensembles contribute to the overall 554 

projections, and overall comprehensiveness is therefore somewhat satisfied (score 2). To 555 

improve along both diversity and completeness, then, the source of the experts should be 556 

revealed – and the experts should be sought from international research centers. Moreover, 557 

“plausibility and diversity” principles could also be applied for the evaluation and selection of 558 

components of the MME.  559 

 560 

Historical Empirical Adequacy 561 

 562 

Different datasets are used to assess the historical performance of models at different timescales 563 

(e.g., the 5-day and 5-year evaluations described in Murphy et al. 2018, p. 41). The discussion in 564 

Murphy et al. (2018) does not provide information about the empirical adequacy of the output of 565 

individual models, but the agreement between model output and observations is discussed with 566 

examples in Lowe et al. (2018).  567 

 568 

Fig. 2 shows the output two random models from the global projections (Model A and Model B) 569 

and the NCIC observations for temperature anomaly, wind speed anomaly and precipitation rate. 570 

There are several problems with this evaluation of empirical adequacy. First, the issues tied to 571 

using anomalies to assess the empirical adequacy of models discussed above are also relevant 572 

here. Second, the comparison of observations and model output for wind speed anomaly and 573 

precipitation do not support a high score on this dimension.  The models illustrated do not appear 574 

to capture enough of the variability for wind speed anomaly although whether this is an artifact 575 
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of model selection or a more general issue is unclear. The precipitation rate output shows a lot of 576 

variation between different models but there is no guidance on how to interpret this variation? 577 

Understanding these issues is important because the features of atmospheric systems that 578 

influence variables such wind speed and precipitation are not as well understood as those that 579 

influence temperature (see Risbey and O’Kane 2011) so the theory quality dimension cannot 580 

take the slack for limited empirical adequacy.  581 

 582 

 583 

 584 

Figure 2. Agreement between model output and NCIC observations for the global projections 585 

over the East Midlands. The model resolution is 60km. The top two panels show model output 586 

and observations on annual timescales and the bottom panel shows model output and 587 
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observations at monthly time scales. Thin and thick curves show averages over different time 588 

periods for the same model (Lowe et al. 2018, p.33). 589 

 590 

There are further issues with how observations are used to assess model output. The global 591 

projections pass two filtering stages where hindcasts are assessed for 5-day and 5-year periods. 592 

The selection of these periods is not described in much detail. For example, 5-day hindcasts are 593 

only performed for data within the 2008/09 period (Williams et al. 2013, p. 3259), and the 594 

science report of Murphy et al. (2018) does not specify the years for which the 5-year 595 

simulations have been performed. Furthermore, the adequacy of all the output of the global 596 

projections cannot be assessed for many of the variables of interest. Moreover, Fig. 2 suggests 597 

that empirical adequacy is not satisfied for variables such as wind speed anomaly and 598 

precipitation by some or all of the models. The historical empirical adequacy dimension is 599 

therefore not satisfied (score 0). To improve this score, the performance of individual models 600 

with respect to absolute values of the variables of interest should be more explicitly discussed for 601 

each model of the ensemble. 602 

 603 

3.3 Regional Projections 604 

 605 

The regional projections serve the same purpose as the global ones and follow a similar 606 

methodology (Murphy et al. 2018). There is therefore considerable overlap in the assessment and 607 

recommendations for improvement of these projections with the above global projections. There 608 

are, however, two main differences between these projections. First, the regional projections only 609 

use models from the Hadley Centre (no CMIP5 data). Second, the regional projections are 610 
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developed using a one-way nesting approach to dynamically downscale the projections over the 611 

UK by forcing a PPE of regional models with a PPE of global models.  612 

 613 

Transparency 614 

 615 

The regional projections somewhat satisfy the transparency dimension (score 2) for similar 616 

reasons as the global projections. As we will discuss below, some of the dimensions are difficult 617 

to assess either because the sources of evidence are not easily accessible or because accessing 618 

them would require a user to have the skills to analyze the data themselves. For example, the 619 

analysis given by Murphy et al. (2018, pp. 95-107) only shows model performance with respect 620 

to temperature and precipitation, while many other variables (such as wind speed, cloud cover, 621 

relative humidity) are available through the user interface (Fung 2018). Higher transparency 622 

could be achieved by following the same recommendations that were given for the global 623 

projections above. 624 

 625 

Theory 626 

 627 

While the regional projections share many methodological assumptions with the global 628 

projections, the evaluation of the regional projections includes some additional theoretical 629 

considerations. For example, model performance in reproducing European climatology is part of 630 

the assessment process. As with the global projections, model performance in reproducing past 631 

climatology and major synoptic systems doesn’t guarantee that they can predict future changes. 632 

Theoretical support is needed to relate past model performance to key processes and how these 633 
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processes might respond to higher GHGs concentrations. There are many difficulties in making 634 

such an assessment. For instance, the extent to which large scale systems such as “atmospheric 635 

blocks” will affect temperature extremes over Europe and nearby regions such as the UK is still a 636 

matter of debate (Voosen 2020). 637 

 638 

These considerations are important for the global projections but are magnified in the case of 639 

downscaled information. Possible biases introduced by downscaling are assessed for temperature 640 

and precipitation (Murphy et al. 2018, pp. 95-107). However, Giorgi (2020, p. 435) notes that the 641 

dynamical components of climate models are not well understood, and downscaling adds 642 

complexity to the evaluation of the model. Hence, as for the case of the probabilistic projections, 643 

reliance on only one modelling strategy may hide significant biases the consequences of which 644 

are not explicitly addressed. The theory dimension is therefore only minimally satisfied by the 645 

regional projections (score: 1). To improve the theory dimension, more explicit justification for 646 

the choice of downscaling method (see, e.g., Rummukainen 2010, 2016; Ekström et al. 2015) 647 

and possible consequences for model output should be included in the documents.  648 

 649 

Diversity and Completeness 650 

 651 

Observations, model output and expert elicitation are the three main types of evidence used here. 652 

So, like the global projections, the regional projections generally satisfy number (score: 3) and 653 

somewhat satisfy comprehensiveness (score: 2).  654 

 655 
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However, the regional projections only minimally satisfy independence (score: 1). First, the 656 

models that are used for the regional projections are all from the Hadley Centre. Watterson et al. 657 

(2014, pp. 607-698) show that CMIP models have an advantage simulating temperature, 658 

precipitation and pressure levels over their home territory. But skill in reproducing past data does 659 

not directly imply good representation of the underlying physical processes–and global scale 660 

phenomena and/or teleconnections may influence future changes in the UK climate. So, the 661 

exclusion of CMIP5 models may undermine the principles of “plausibility and diversity” that 662 

guide the production of the global projections. Second, as discussed above, the downscaling step 663 

adds complexity, introducing further assumptions into the modeling process. To improve 664 

independence and comprehensiveness, more models that were not developed by the Hadley 665 

Centre should be taken into consideration. The provenance of the experts involved in the 666 

elicitation process should be diverse, too. 667 

 668 

Historical empirical adequacy 669 

 670 

The empirical adequacy of the regional projections is assessed by evaluating the performance of 671 

the regional models in reproducing European climatology, surface temperature, precipitation and 672 

AMOC strength using the NCIC dataset and the standard configuration of the GCM used for the 673 

global projections. Murphy et al. (2018) claim that model performance is also assessed for other 674 

variables, but it is not discussed in detail in the report and so cannot be assessed. 675 

 676 

The empirical adequacy of the regional projections is described more thoroughly than for the 677 

global projections, and as discussed above, there is an extensive discussion of how data and 678 
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model output are compared to observations to eliminate models with possible biases. The 679 

acknowledgement of biases in model performance for absolute values of temperature and 680 

precipitation at different spatial resolutions (see, e.g., Fig 4.5a in Murphy et al. 2018) suggest 681 

that the regional projections generally satisfy empirical adequacy (score: 3) for some of the 682 

variables of interest. However, there are some important caveats. First, the empirical adequacy 683 

cannot be assessed for all variables available in the regional projections. Second, a higher 684 

historical empirical adequacy does not imply a higher overall quality of the information. 685 

Furthermore, even if the regional projections have a higher historical empirical adequacy score 686 

than the global projections, they cannot have overall higher quality than the global projections 687 

due to the additional assumptions introduced by the downscaling step. Historical empirical 688 

adequacy could be improved by explicitly discussing model performance for each variable 689 

provided. 690 

 691 

Overall assessment 692 

 693 

The overall quality of a product cannot be assessed as the sum of the individual evaluations 694 

along the different dimensions (Baldissera Pacchetti et al. 2021). Interdependencies of the 695 

assessed products, of the quality dimensions and their relation to statements about different 696 

variables makes overall quality comparisons difficult. Nevertheless, the dimensions highlight the 697 

major strengths and weaknesses of the projections and how these are related to features of the 698 

projection construction process. Fig. 3 provides a visualization of the scores of the quality 699 

assessment for the different projections. This figure shows that the probabilistic projections have 700 

the lowest quality, and that its main shortcomings derive from lack of transparency, theoretical 701 
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support and lack of adequate empirical tests. The global projections have higher quality but also 702 

lack historical empirical adequacy.  703 

 704 

705 

(a) 706 

 707 
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 708 

(b) 709 
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 710 

 711 

(c) 712 

Figure 3 Visualization of the scores of the assessment of the probabilistic (a), global (b) and 713 

regional (c) projections. Note that scores for quality dimensions cannot be simply aggregated and 714 

there are interdependencies among different projections, so a larger shaded area does not directly 715 

imply a higher overall quality.  716 

 717 

The higher quality of the global projections derives from two key differences. First, the global 718 

projections are not concerned with probabilistic estimates of future climate but rather with 719 
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individual model simulations and potential future trajectories. This means that the evidential 720 

standards for achieving epistemic reliability are different. Second, the theoretical component–721 

both in terms of underlying physical theory and the justification of the methodology is better 722 

justified in the global projections. The importance of synoptic weather systems and their role for 723 

understanding changes in regional weather are acknowledged, and the “plausibility” principle 724 

draws explicit attention to the physically meaningful representation of the processes that drive 725 

regional changes. Nevertheless, the above analysis shows that one cannot adequately assess the 726 

extent to which these projections satisfy key dimensions such as historical empirical adequacy of 727 

the global projections. 728 

 729 

The regional projections have slightly lower quality than the global projections. There is little 730 

independence between sources of evidence, and the additional downscaling step, while 731 

thoroughly explained, requires additional theoretical justification for the regional projections to 732 

be adequately assessed as epistemically reliable. Moreover, the focus on the use of mostly 733 

nationally produced models raises questions about the context in which these models are granted 734 

epistemic authority (see, e.g., Mahony and Hulme 2016). 735 

 736 

4. Towards higher quality regional climate information  737 

 738 

We have assessed the quality of UKCP18 as an exemplar of state-of-the art regional climate 739 

information that can inform climate adaptation decision-making, and provided some suggestions 740 

for improvement. In this section, we consider some of the broader implications of this 741 

evaluation. 742 



 
 

39 
 

UNDER REVIEW – DO NOT SHARE, CITE OR QUOTE WITHOUT PERMISSION OF THE AUTHORS 

 743 

4.1 Transparency 744 

 745 

A significant issue that lowers the overall quality of these products is transparency. Not all the 746 

data on which quality could be assessed is presented in the science report documents. Where 747 

historical empirical adequacy or the limitations of a particular methodological choice are not 748 

explicitly assessed, the task is left to the user. These considerations suggest that the concerns 749 

raised by Porter and Dessai (2017), who found that the scientists involved in UKCP09 assume 750 

that the recipients of the information they produce have similar skills to their own, are somewhat 751 

inherited by UKCP18.  752 

 753 

This lack of transparency compromises the extent to which a user can evaluate the quality of the 754 

information produced by UKCP18. Some recently published research evaluates components of 755 

quality such as historical empirical adequacy for some climate-impact relevant metrics such as 756 

heat stress (e.g. Kennedy-Asser et al. 2021), but it is primarily aimed at an academic audience. 757 

Some documents produced by the UK Met Office such as the UKCP Enhancements4 produce 758 

fact sheets that are aimed at improving transparency and provide more insight into how other 759 

dimensions, such as theory, could be satisfied. However, there is little integration between the 760 

documents, which itself poses a further barrier transparency; something which becomes even 761 

more important when climate information is integrated into climate services (Otto et al. 2016). 762 

 763 

 
4 To be found here: https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/index (accessed 22 
February 2021) 
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For comparison, take the “traceable accounts” approach of the Fourth U.S. National Climate 764 

Assessment (USGCRP 2018, Chapter 2), which provides a thorough description of the 765 

information construction process. In a similar vein, the European Union’s Earth Observation 766 

Programme, Copernicus, is implementing an Evaluation and Quality Control (EQC) system for 767 

all of the products available through its climate data store (CDS).5  768 

 769 

4.2 Uncertainty assessment and quantification 770 

 771 

The above quality analysis reveals that the probabilistic projections have the lowest quality. The 772 

lower quality of these projections partly lies in the probabilistic nature of the representation of 773 

uncertainty estimates, and the lack of an explanation of what these probabilities represent: the 774 

estimates provided by the probabilistic projections don’t reflect confidence in the strength of the 775 

evidence.  776 

 777 

One interpretation of the approach to uncertainty quantification followed by UKCP18 is that the 778 

authors assume that likelihoods and confidence can usefully be treated separately, and that 779 

confidence estimates can be provided at a later stage. This approach is similar to the one 780 

described by Mastrandrea et al. (2011) and used, e.g., in the Special Report on Managing the 781 

Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX, IPCC 782 

2012). But this approach has been criticized on the grounds that the distinction between 783 

confidence and likelihood is not clear (e.g. see Kandlikar et al. 2005 and Helgeson et al. 2018 for 784 

an overview), and all likelihood statements are conditional on confidence levels.  785 

 
5 https://climate.copernicus.eu/quality-assurance-climate-data-store  
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 786 

To clarify this point, consider the trade-offs that exist between confidence, precision and 787 

evidence described by Helgeson et al. (2018): confidence (in the epistemic reliability of a 788 

particular statement) “can be raised…by widening the probability interval … [and] less 789 

informative [i.e. precise] probability intervals may enjoy greater confidence because they are 790 

supported by additional … lines of evidence from which sharper probabilistic conclusion cannot 791 

be drawn” (p. 520). This complex interaction between the evidence and its relationship to 792 

statements about future climate emphasizes the importance of clarifying exactly how the 793 

different lines of evidence can be integrated into information production. 794 

 795 

In particular, these considerations indicate that claiming that the probabilities are “conditional on 796 

the evidence” is an insufficient justification for providing probabilistic information aimed at 797 

decision-support. If non-quantifiable evidence lowers the confidence in the probability estimates 798 

one should one consider alternative ways of representing uncertainties about future regional 799 

climate (see, e.g. Risbey and Kandlikar 2007). If, however, a probabilistic framework of higher 800 

quality is desired, then metrics such as theory, diversity and completeness should be satisfied to a 801 

greater extent. For example, there should be a better theoretical justification of the derivation of 802 

the probability distribution functions and the kind of knowledge claim they represent, an attempt 803 

to quantify structural dependencies between the PPEs and MMEs, and an explanation of how the 804 

discrepancy term relates to real world observations rather than the MME output. 805 

 806 

Alternatively, different ways of exploring uncertainty and knowledge claims about future climate 807 

are being developed. For example, Dessai et al. (2018) develop narratives about deeply uncertain 808 
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future regional climate by drawing from expert elicitation, observation and reanalysis data. 809 

Bhave et al. (2018) exemplify this approach by using expert elicitation to develop climate 810 

narratives that are combined with socioeconomic narratives. These are then converted into 811 

quantitative output that is used to drive a hydrological model. In this approach, expert knowledge 812 

is prioritized and used to replace projections to explore plausible futures and their impact on 813 

regional scales. 814 

 815 

Another related approach prioritizes theoretical understanding of the effects of global warming 816 

driven changes in atmospheric circulation and their impact on regional climate (Zappa and 817 

Shepherd 2017). This approach also intends to complement or replace ensemble approaches to 818 

explore uncertainties in future weather and climate extremes. Ensemble approaches can be 819 

problematic because of the sparse data availability, and the fact that changes in these events 820 

depend on the understanding of large-scale drivers, as well as regional-to-local feedback 821 

processes (Sillmann et al. 2017). This novel approach aims to assess causes of past extreme 822 

events to develop plausible storylines about future events (Shepherd et al. 2018). It also follows a 823 

distinctively different logic of research than approaches that aim at representing weather events 824 

in terms of likelihoods (Lloyd and Shepherd 2020, p. 120). 825 

 826 

5. Conclusion 827 

 828 

In this paper, we have applied the quality assessment framework developed by Baldissera 829 

Pacchetti et al. (2021) to state-of-the-art regional climate information in the form of the UKCP18 830 

land projections. We started by describing the framework, its target, and the components of 831 
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regional climate information that the framework assesses. We then assessed the UKCP18 832 

probabilistic, global and regional projections along the dimensions of the quality framework.  833 

 834 

The assessment produced two major insights that provide key recommendations for future efforts 835 

to produce decision relevant information about future regional climate. First, a significant issue 836 

that taints the quality of UKCP18 is the lack of transparency. The lack of transparency is 837 

particularly problematic if the information is directed towards non-expert users, who would need 838 

to develop technical skills to evaluate the quality and epistemic reliability of the information. 839 

Second, the probabilistic projections are the projections with lowest quality. This assessment is a 840 

consequence of both lack of transparency, and the way the method is used and justified to 841 

produce quantified uncertainty estimates about future climate.  842 

 843 

The assessment also has some important implications for the application of the quality 844 

framework. First, it shows that there are interdependencies among the dimensions. Second, these 845 

interdependencies highlight the importance of considering the target of the framework: the 846 

evidence and methodology used to derive the statements about future regional climate, and the 847 

statements themselves. The way these elements are combined, the choice of variable(s) that the 848 

statements address, and the form the statements take, all affect the extent to which different 849 

dimensions can or should be satisfied. A quality assessment will therefore look different for a 850 

storyline about future regional precipitation by comparison to a probabilistic statement about 851 

future regional temperature, for instance. 852 

 853 
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Looking forward, we ask whether there is state-of-the-art regional climate information that is of 854 

high quality. While the quality dimensions of the framework are indeed aspirational, this analysis 855 

has shown that UKCP18 does not satisfy several of them for the products analyzed. We have 856 

argued that UKCP18 is an exemplar of state-of-the-art regional climate information, so a 857 

question that arises in this context is whether, in general, the state of the art needs to include 858 

different approaches to achieve high quality. When developing different approaches, the quality 859 

framework can be used to inform considerations about use evidence and methodology to derive 860 

high quality regional information for climate change adaptation decisions.  861 

 862 

There are two different ways in which the above can be explored. First, through a systematic 863 

literature review that surveys the most recent research that aims to produce decision-relevant 864 

information about future climate at regional scale. Second, the framework could be applied to 865 

other products like UKCP18. For example, the Swiss National Centre for Climate Services has 866 

also released climate change scenarios (CH2018). The Royal Netherlands Meteorological 867 

Institute also releases a suite of scenarios about future regional climate in 2021. Analyses of 868 

these products would further demonstrate the value of the quality assessment framework and 869 

reveal whether it can detect subtle differences in quality in information produced by different 870 

groups of scientists using different methodologies. 871 

 872 

Finally, an important yet unexplored aspect of quality is the inclusion of a user perspective. It is 873 

increasingly understood that including end-user needs is important for making the information 874 

accessible and salient, especially as climate information is incorporated into climate services 875 

(Clifford et al. 2020). Understanding how a quality assessment framework might change as the 876 
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information moves from research and producers to users and centers of knowledge co-production 877 

is an important yet unexplored ramification of this research.  878 
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