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Abstract This chapter explores the topic of imprecise probabilities (IP) as it re-
lates to model validation. IP is a family of formal methods that aim to provide a
better representation of severe uncertainty than is possible with standard probabilis-
tic methods. Among the methods discussed here are using sets of probabilities to
represent uncertainty, and using functions that do not satisfy the additvity property.
We discuss the basics of IP, some examples of IP in computer simulation contexts,
possible interpretations of the IP framework, and some conceptual problems for the
approach. We conclude with a discussion of IP in the context of model validation.

1 Introduction

Model validation is an important aspect of quality control when modelling some
phenomenon about which we are uncertain. So, accommodating and representing
uncertainty is of central importance to model validation. Probability theory provides
the standard suite of tools for dealing with uncertainty, but this theory has its lim-
its. For example, models will often contain parameters whose true value we don’t
actually know. Now, we can’t run a simulation without providing a value for this pa-
rameter, so for each simulation we run, we must pick some value. If we sample this
value from a distribution, and run several simulations – sampling from this distribu-
tion each time – we can, to some extent, accommodate uncertainty in the parameter
value. In doing so, however, we are assuming that a certain sort of distribution is
the “right” distribution to be sampling from. If the parameter fluctuates randomly
and we have data on the distribution of fluctuations, perhaps a particular distribution
can be justified. If not, it is typical to pick some “non-committal” distribution that
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will not skew the results of the simulation. For example, if bounds can be put on the
range of values the parameter can take, a uniform distribution is often selected. Now
a uniform distribution seems innocuous, non-committal, but the distribution’s being
uniform for some parameter means that distributions for related parameters are not
uniform. Ferson and Ginzburg (1996) give the example of two independent uni-
formly distributed parameters that give rise to a non-uniformly distributed product.
Or consider two inversely related parameters (like “ice fall rate in clouds” and “ice
residence time in clouds”): if one is uniformly distributed, the other is not. This is,
in essence, the problem that Joseph Bertrand pointed out at the end of the nineteenth
century that is today known as “Bertrand’s paradox”.

The practice of sampling unknown parameters from distributions chosen for con-
venience rather than for empirically grounded reasons is a necessary aspect of stan-
dard modelling practice. Imprecise Probabilities is an approach that attempts to mit-
igate some of the problematic consequences of such a methodology. This chapter
will outline the basic idea of IP, give some examples of IP in modelling contexts,
discuss how we might interpret the IP framework, and point to some potential prob-
lems for IP. We will conclude with a discussion of IP in the context of validation.

2 Basics

The core idea of Imprecise Probabilities (IP) is to represent uncertainty using a set
of probability measures rather than a single such measure (although there are a great
many related formal models that we’ll discuss later in this section).2 The basics of
uncertainty quantification were introduced in CHAP03 and CHAP21, and the prob-
abilistic/Bayesian approach to uncertainty was discussed in CHAP06 and CHAP19,
so let’s jump straight to the basic idea of IP. We use pr to signify a probability
function. The basic idea of IP is that we represent uncertainty, not by a single such
function, but by a set of them – P – defined over the same state space. If X is an
event over which the prs are defined, then we can let P(X) = {pr(X),pr ∈P}.
That is, we can take P(−) to be a set-valued function that returns the set of values
assigned to X by members of P . We can then apply the rest of the Bayesian machin-
ery “pointwise”. So conditionalising P involves conditionalising on each member
of P and taking the resultant set of conditional probabilities. Expected values also
become sets of values, determined pointwise for each pr ∈P .

Recall that a probability function pr is a real valued function on an algebra of
events that has the following properties:

2 Although one can find precedents going back to Keynes or even Boole, IP really started in the
middle of the twentieth century with work by people like Koopman (1940), Good (1952, 1962),
Smith (1961) and Dempster (1967). Work in philosophy on IP really starts with Levi (1974, 1980,
1986). Important formal and philosophical work on IP was carried out by Seidenfeld (1983, 1988);
Seidenfeld et al. (1989) (Seidenfeld was Levi’s graduate student). Walley (1991) was a hugely
influential book which, until recently, was still the go-to monograph for many formal details of the
theory. The state of the art in terms of formal theory can be found in Augustin et al. (2014) and
Troffaes and de Cooman (2014). Bradley (2014) provides a philosophical overview.
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Bounded For all X , 0 = pr(⊥) ≤ pr(X) ≤ pr(>) = 1 (where ⊥ and > are the
bottom and top elements of the algebra, respectively)

Superadditive If X ∧Y =⊥ then pr(X ∨Y )≥ pr(X)+pr(Y )
Subadditive If X ∧Y =⊥ then pr(X ∨Y )≤ pr(X)+pr(Y )

A function that satisfies the first and second of these properties is called a “lower
probability” and a function that satisfies the first and third is called an “upper prob-
ability”.

The idea of a set of functions and the idea of a lower probability are intimately
related. Take a set of probabilities, P and define P(X) = infP(X), the lowest
value assigned to X by some member of P . This function P is a lower probability.3

Likewise, P(X) = supP(X) is an upper probability. Moreover, P(¬X) = 1−
P(X).

And going the other way, take a lower probability lpr, and define the associated
credal set of lpr as the set of probability functions such that pr(X) ≥ lpr(X) for
all X , the set of probability functions that “pointwise dominate” it. If lpr is a lower
probability as defined above, such a set is non-empty; let M(lpr) be the associated
credal set of lpr. Since M(lpr) is a set of probabilities, we can take the “lower
envelope” as we did above: M(lpr)(X). The lower envelope theorem entails that
lpr is a lower probability if and only if M(lpr)(X) = lpr(X) for all X (see §3.3
of Walley (1991) or §2.2.2 of Augustin et al. (2014)). Note that distinct credal sets
might result in the same lower probability.4

As well as credal sets and lower probabilities, there is a huge range of other
related formal methods for representing uncertainty (see, for example, Halpern
(2003); Augustin et al. (2014); Klir and Smith (2001)). For example, Dempster-
Shafer theory (sometimes called Evidence Theory) uses a belief function which is
a lower probability with the further property of being infinite-monotone (a sort of
strengthening of superadditivity). DS theory comes equipped with a slightly differ-
ent interpretation (see §4) and an alternative kind of updating/aggregation rule.5

This brief discussion merely scratches the surface of the rich and interesting the-
ory of IP. Many aspects of statistical method have been replicated inside the IP
framework including statistical inference, graphical models (e.g. Bayes nets), and
stochastic models (e.g. Markov chains).6 See, for example Augustin et al. (2014);
Troffaes and de Cooman (2014).

3 Consider some pr ∈P for which pr(X ∨Y ) = P(X ∨Y ). infP(X) + infP(Y ) ≤ pr(X) +
pr(Y ), since pr ∈P , so P is superadditive. Boundedness is trivial, and much the same reasoning
works if the set P doesn’t attain its bounds (just think in terms of the closure of the set).
4 There is a one-to-one correspondence between lower probabilities and a subset of the set of credal
sets, namely those with some nice topological properties. We don’t need to discuss this here, but
see the above listed references for details.
5 See Oberkampf and Helton (2004) for a discussion of DS theory in an engineering context.
6 For introductions to these aspects of IP, see Augustin et al. (2014) chapters 7, 9 and 11 respec-
tively.
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3 Examples

In this section we’ll explore two examples of IP-like ideas that show up when at-
tempting to model physical systems on computers.

3.1 Unknown parameters

Oberkampf and Roy (2010) discuss an example of how IP arises in scientific com-
puting.7 They start from the position of wanting to keep apart epistemic uncertainty
– uncertainty arising from things unknown to the experimenter – and aleatory uncer-
tainty – randomness or natural variability.8 Now, whether some kind of uncertainty
counts as one or the other of these kinds is somewhat a matter of perspective, the dis-
tinction is important. Aleatory uncertainty about a parameter can be accommodated
by having a probability distribution over that parameter in the model. Epistemic un-
certainty, on the other hand, is captured by having a set of such distributions, i.e.
having a credal set.

The idea is that if a parameter is subject to aleatory uncertainty, you can sam-
ple values for that parameter (using the given distribution), run the simulation using
those sampled values and then take the distribution of outcome values as telling you
something about uncertainty in the outcomes. However, with epistemic uncertainty,
you must pick specific values of the parameter to run through the model (and you
must pick them using some distribution). You can’t take the distribution of outputs
as telling you about the uncertainty in the outcomes: you can only take the range
of outcome values as telling you what ranges of values of outcome values are pos-
sible given your uncertainty about the parameter. Or perhaps a more careful way
to phrase the same thing: the distribution of output values might be in part due to
the choice of input distribution for the unknown paramaters. If that distribution were
chosen merely for convenience, then we had better not read too much into the output
distribution. As Oberkampf and Helton (2004) say:

If extreme system responses correspond to extreme values of these parameters (i.e. values
near the ends of the uniform distribution), then their probabilistic combination could predict
a very low probability for such extreme responses. Given that the parameters are only known
to occur within the intervals, however, this conclusion is grossly inappropriate. (p. 10–3)

As we discussed earlier: the product of independent uniformly distributed variables
will not be uniform: it will give more weight to those values in the “middle” of
the interval of possible values. If we have no reason to think the variables really
are uniformly distributed, then it seems unwise to discount these possible extreme
responses as the standard approach implicitly seems to.

7 I am drawing mainly from §13.4, but similar ideas appear in a number of other places in the book.
8 This is one dimension of the many ways one can categorise different kinds of uncertainty. See
CHAP03 or Morgan and Henrion (1990) chapter 4.
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This is sometimes known as “probability bounds analysis” or “p-boxes”. The
following two quotations give you the flavour of this approach.

In a probability bounds analysis, the uncertainty about the probability distribution for each
input variable is expressed in terms of interval bounds on the cumulative distribution func-
tion. These bounds form a p-box for each input variable. (Ferson and Hajagos, 2004, p. 136)

Basically, interval analysis should be used to propagate ignorance, and probability theory
should be used to propagate variability. (Ferson and Ginzburg, 1996, p. 133)

A similar approach is advocated by Stainforth et al. (2007b), where they suggest
that we interpret the range of values produced by ensemble members to be a “non-
discountable envelope” of values of that variable: a range of values that we cannot
dismiss as impossible.

3.2 The challenge problems

In 2002 a workshop was organised around the idea of a set of “challenge problems”
that were intended to serve as a kind of standard suite of tests for a theory of uncer-
tainty (Helton and Oberkampf (2004)). Oberkampf et al. (2004) presents the chal-
lenge problems, and many of the papers in that special issue of the journal respond to
them. The problems are designed to highlight issues of “representation, aggregation,
and propagation of uncertainty through mathematical models” (Oberkampf et al.,
2004, p. 15). The challenge is to come up with some way to predict the behaviour
of a system given a model of the system and some evidence as regards some un-
known parameters of that system. Each problem has two unknown parameters, and
some sort of mathematical model whose output depends on those unknowns. The
information about the unknown parameters might be given in a number of different
ways. A simple example is in problem 1, we are told that parameter a is somewhere
in the interval [a1,a2]. A more complex example is given by problem 3c where you
are told that you have n independent sources of information regarding parameter b,
each witness j tells you that b lies in an interval [b j

1,b
j
2]. The model whose outputs

depends on the parameters can also be more or less complex. For example, for some
of the models it is simply a function of the parameters. In other cases the parameters
are meant to represent physical constants of some simple physical system.

Several papers have presented broadly IP solutions to this problem set. For ex-
ample, de Cooman and Troffaes (2004) use the theory of lower previsons to address
the problems, while Ferson and Hajagos (2004) use p-boxes.9

9 See also Fetz and Oberguggenberger (2004) and Helton et al. (2004) for further examples of IP
approaches to the challenge problems. See Ferson et al. (2004) for an overview of the range of
responses to the challenge problems.
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3.3 Nonprobabilistic odds

Frigg et al. (2014) offer a cautionary tale that suggests that treating distributions of
model output as capturing decision relevant probabilities is dangerous when the tar-
get system appears to behave chaotically. The starting point is the scepticism about
ensemble forecast probability distributions expressed by Stainforth et al. (2007a):

The frequency distributions across the ensemble of models may be valuable information
for model development, but there is no reason to expect these distributions to relate to the
probability of real-world behaviour. One might (or might not) argue for such a relation if the
models were empirically adequate, but given nonlinear models with large systematic errors
under current conditions, no connection has been even remotely established for relating
the distribution of model states under altered conditions to decision-relevant probability
distributions. (p. 2154)

Frigg et al. (2014) develop a simple example that illustrates this point. They start
with a simple mathematical system that an agent wants to use to model a vari-
able of interest. The target system’s dynamics are similar to but not identical to
the system used for prediction (the one timestep error is always less than one in a
thousand). Unfortunately, both the target system and the model exhibit chaotic be-
haviour, which means that these errors compound and grow. If we are predicting at
about 8 timesteps out, the errors can grow to such an extent that the distribution of
model outputs for an ensemble of nearby initial conditions can be located entirely on
the left hand side of the unit interval while the ensemble of outputs for the target sys-
tem is entirely on the right hand side. What this means is that the model appears to
be telling you that it’s overwhelmingly likely that the variable will be less than 0.5,
while the truth is that it’s overwhelmingly likely to be greater than 0.5. Obviously
betting using these ensemble probabilities would be disastrous. What Frigg et al.
(2014) show is that, in fact, it’s very often disastrous to bet using ensemble proba-
bilities in a case like this where the dynamics are nonlinear and there’s a chance of
model error.

They suggest that instead of taking the ensemble probabilities at face value, they
should be manipulated to produce “nonprobabilistic odds” which don’t yield ru-
inous betting strategies. How exactly this process should be effected is still up for
debate, but what is clear is that the nonprobabilistic odds thus produced will be in-
versely proportional to upper probabilities, in the same way that probabilistic odds
are inversely related to standard probabilities.

4 Interpretations

What does it mean to say that our uncertainty is captured by a set of probability
measures (or an upper probability, or a p-box, or. . . )? In this section, we shall dis-
cuss some ways of interpreting such claims. I will discuss several such ideas, but I
do not mean to suggest that this survey is exhaustive, nor that the ideas presented
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here are mutually exclusive: it is certainly possible to be motivated by more than
one of these interpretations of the formalism.10

4.1 One-sided betting

Consider betting on the value of a random variable.11 Let X be the set of values that
random variable X can take. A bet on the value of X can be described by a function
from X to the real numbers. Call such functions gambles. How much would you
be willing to pay for a gamble g? That is, when do you find the gamble g− µ

desirable? (Where µ is the constant gamble that corresponds to the amount you pay
to take g). It seems like the highest price you are willing to pay to take g reflects
your valuation of g. Let lpr(X) = sup{µ ∈R : g−µ is desirable}. Now consider the
minimum price you would accept to sell the gamble g. That is, the minimum price
at which you find µ − g desirable. Given some reasonable coherence constraints
on your set of desirable gambles,12 if you require that this should be equal to lpr,
then lpr is a linear prevision. And indeed, if we consider gambles over a set of
indicator functions for some set of states, then lpr gives a probability function. The
exploration of linear previsions as a foundation for probability theory goes back to
Bruno de Finetti. This is one version of what is known as the “Dutch book theorem”,
since the coherence constraints on desirability essentially prevent you accepting a
collection of bets that guarantee you a sure loss (see CHAP06).

If you drop the requirement that your maximum buying price and your minimum
selling price should be the same – if you move away from “two-sided” betting to
“one-sided” betting – then lpr behaves somewhat like a “lower expectation” opera-
tor (called a lower prevision) and its restriction to gambles on indicator functions is
a lower probability as defined above. The theory of lower previsions was first sys-
tematically set out in Walley (1991); Troffaes and de Cooman (2014) provides an
admirably clear self-contained treatment of the theory, as well as significant refine-
ments. Note that the bets discussed in Frigg et al. (2014) are one-sided bets in this
sense.

If we consider real world instances of bookmakers or financial traders, there is
typically a difference between their buying and selling prices for their commodities
(bets, financial products, whatever). Now, part of this spread is explained by the
desire to make a profit, but there is evidence that the “bid-ask spread” can also be
responsive to the amount of uncertainty about the future performance of the instru-
ment (Smith and van Boening, 2008).

10 For more on the interpretation of IP, see Bradley (2014).
11 We earlier described probability theory in terms of events rather than random variables, but
the difference is mostly cosmetic. Real-valued random variables are functions from events to real
numbers, events are “indicator functions” in the space of random variables.
12 For example, if you find f desirable, and you find f ′ desirable, you should find f + f ′ desirable;
or if a gamble’s payout is always non-negative, then it is desirable. . .
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So, if we interpret lower previsions and lower probabilities as reflecting the
agent’s limiting willingness to bet – as is standard in Bayesian approaches – this
gives us a natural interpretation of the formalism that is broadly in line with the
standard precise probabilist picture.

4.2 Indeterminate belief

One way to interpret credal sets is to take them to reflect an indeterminacy in ra-
tional belief. If P(X) is a set of values, this means that it is indeterminate – vague
– what rational belief you ought to adopt in X given the evidence that determined
that P . This approach takes inspiration from the supervaluationist theory of logic,
which uses a set of truth valuation functions to characterise the satisfaction of a
vague predicate. If Wayne is a borderline case of the predicate “bald”, then “Wayne
is bald” is true according to some members of the set of valuations – “true on some
precisifications” – and “Wayne is bald” is false on others (Williamson (1994)). Ri-
nard (2013, 2015) has argued for a supervaluationist understanding of credal sets:
if it is indeterminate whether the agent’s credence in X is stronger than 0.5, some
members of the credal set have pr(X) > 0.5 while others pr′(X) < 0.5. If every
member of the credal set agrees on something (e.g. that pr(X) > 0.1), then it is
determinately true that the agent believes that pr(X)> 0.1. This idea is sometimes
characterised by the metaphor of the “credal committee” (Joyce (2010)): each prob-
ability in the credal set is a committee member and the committee as a whole must
decide what to do. When there is unanimity in the committee then things are easy,
when there is conflict – disagreement – then things are tricky.13

If you want to treat your credal sets or your lower probabilities not as subjective
credences but as something akin to objective chances, then you might still be able
to take a view of this form: the imprecision in your probabilities is due to objective
indeterminacy in the world. This is an underexplored possibility, but see Bradley
(2016).

4.3 Robustness analysis

Let’s say you run your model with a particular set of parameters, but you are not
confident that the parameters you chose are the actual ones. If there’s a danger that
the result you obtain depends in a big way on the specific value of the parameter
chosen, then perhaps it’s best to explore how robust your result is when changing
those parameter values. The range of output values, the range captured by the set
of probability functions, reflects a robust range of possible outcomes. This “robust
bayesian analysis” has a rich history. See, for example Ruggeri et al. (2005). This

13 The idea of IP as reflecting unresolved conflict – either between persons or within a person – is
one that Isaac Levi discussed in great detail Levi (1980, 1986).
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idea is very closely connected to the discussion of “probability bounds analysis”
and “non-discountable envelopes” discussed in Section 3.1.

If one is taking a Bayesian approach to validation (CHAP6 CHAP19) then one
has to respond to the “problem of the priors”: the criticism that Bayesian methods
rely on epistemically unmotivated prior probability. One response to such a criticism
would be to move to an “imprecise Bayesian” perspective which is, essentially, to
apply the robustness analysis approach to the prior. The set of priors allows one to be
confident that one’s conclusions are not artefacts of the particular prior one chose.

4.4 Evidence Theory

Instead of interpreting lpr as a degree of confidence, or a limiting willingness to bet,
one might want to interpret lpr(X) as “the degree to which the evidence supports X”.
This is the intepretation typically associated with the “Dempster-Shafer function”
approach to evidence. A “Dempster-Shafer belief function” is a lower probability
that has the additional property of being “infinite monotone”. The actual formal
description of this property is a little messy, and not particularly illuminating in the
current context, but see (Halpern, 2003, Ch. 2.4) for the basics of Dempster-Shafer
theory, and see (Augustin et al., 2014, Ch. 4&5) and (Troffaes and de Cooman, 2014,
Ch. 6&7) for belief functions and their relation to lower probabilities. Dempster-
Shafer theory also has a distinct theory of evidence combination which is beyond
the scope of this chapter (but see (Halpern, 2003, Ch. 3.4)).14

The motivating idea behind this degree of support idea is that your evidence can
support X to degree p without thereby supporting ¬X to degree 1− p (as would
be required if degree of support were probabilistic). Hawthorne (2005) argues that
Bayesians need to keep degree of belief and degree of support distinct (and that both
concepts are useful).

5 Problems

IP suffers from a number of issues. Here, we shall outline some of them. As we’ll
see, not all of them are really that worrying in the context of model validation.

14 See also Oberkampf and Helton (2004) for an example of DS theory in an engineering context.
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5.1 Updating

Recall that earlier we said that we conditionalise a set of probabilities pointwise.
That is, P(X |Y ) = {pr(X |Y ),pr ∈P,pr(Y )> 0}.15 There are two problems with
conditionalising this way that are worth mentioning briefly.

First, dilation. An early, important discussion of dilation is Seidenfeld and
Wasserman (1993).16 Consider a set of probabilities P constrained as follows for
all pr ∈P:

• pr(H) = 1
2

• pr(H|X) = pr(H)

Now consider the proposition Y which is equivalent to (H ∧X)∨ (¬H ∧¬X). It’s
easy to show that for all pr ∈P , pr(Y ) = 1

2 . Let P contain all probability func-
tions over these propositions other than those ruled out by the above constraints. So
P(X) = [0,1]. Note that it follows from the definition of Y and some basic prob-
ability theory that for all pr ∈P , pr(H|Y ) = pr(X). Therefore P(H|Y ) = [0,1].
Note that the same reasoning entails that P(H|¬Y ) = [0,1]. This, in essence, is
the phenomenon of dilation. What is this considered a problem? To see this, let’s
consider an example that gives some meaning to the variables.17

I have two coins, one fair and one mystery coin of unknown bias. Let H be
the event that the fair coin lands heads, and let X be the event that the mystery
coin lands heads. (Verify that the above discussed probabilistic constraints seem
reasonable given this interpretation of the propositions). Now I toss both coins and
announce that the two coins landed the same way up (either both heads or both tails),
call this proposition Y . What is your posterior in the fair coin having landed heads?
P(H|Y ) = [0,1]. Your belief in the fair coin’s having landed heads has dilated: the
interval of probability values has spread out from { 1

2} to [0,1]. And this happens
regardless of whether you learn Y or ¬Y . This seems puzzling. Learning the fact
that the two coins landed the same way up doesn’t seem like it should cause me
to change my belief in whether the fair coin landed heads. It seems like you have
learned something irrelevant to H and it has caused you to become more uncertain
about H. That seems like a strange way to arrange your credences.

Dilation, despite initial appearances, isn’t as problematic as some (e.g. White
(2010)) take it to be. For example, in different ways, Joyce (2010), Bradley and
Steele (2014b), Pedersen and Wheeler (2014) and Hart and Titelbaum (2015) all ar-
gue that dilation is actually the correct response to the evidence as specified. Gong
and Meng (2017) argue that dilation is a symptom of a mis-specified statistical in-
ference problem, not a problem for IP per se.

We can think of the problem as follows. The constraints we placed on our model
place no constraint at all on what values pr(H|Y ) might take. It is somewhat in-
tuitive that H and Y say nothing about each other. If we take this “silence” to be

15 The restriction to non-zero probability in the conditioning event is for convenience: if we had
defined credal sets in terms of Popper functions or similar we could do without such a restriction.
16 A recent characterisation of dilation is found in Pedersen and Wheeler (2014).
17 This description of the puzzle follows Joyce (2010).



Imprecise Probabilities 11

modelled by probabilistic independence – pr(H|Y ) = pr(H) = 1
2 – then our P

becomes the singleton with pr(X) = pr(H|Y ) = 1
2 . But, as Pedersen and Wheeler

(2014) point out, independence for sets of probabilities can be much more subtle
(Cozman (2012)). As Bradley (2014) explains, probabilistic independence is not the
appropriate characterisation of the “silence” of Y with respect to H. As it stands, it
is compatible with the problem set up that Y would be very informative about H,
if only we knew something about the bias of the mystery coin. That is, if we knew
that the mystery coin were biased towards heads, learning that the coins landed the
same way up would be evidence in favour of heads on the fair coin. It is not that H
and Y are unrelated: it’s just that the nature of their relationship is unknown.

Let’s turn now to another puzzle related to updating sets of probabilities: the
problem of belief inertia. This problem, though not under that name, goes back
to §13.2 of Levi (1980), and is also discussed by Walley (1991); Vallinder (ming)
provides a nice discussion of the current state of the art. Consider the mystery coin
again. Recall that proposition X is “mystery coin lands heads up”, and P(X) =
[0,1]. Now consider learning that in ten flips of the mystery coin, 8 were heads. Call
this proposition Z. This seems like some evidence that could potentially move your
credences about. But note that P(X |Z) = (0,1). Why? Because, even if we assume
that all the priors in P are “well behaved” beta distributions over the unknown bias
of the mystery coin, there are some distributions in P that put so much weight
on the probability for landing heads being really really low that even evidence Z
doesn’t move them very far away from 0. In the case that P(X) = [0,1] the “credal
committee” contains members that are so stubborn that they are moved an arbitrarily
small distance by the evidence. And likewise for the top end of the unit interval.
Starting with a vacuous prior like this seems to make learning impossible.

The imprecise probabilities that are likely to arise in a validation setting are not
likely to be vacuous, so perhaps this is less of a concern in the current context.

5.2 Decision making

Ultimately, we often want to use the results of our simulations for decision support:
we want to take our simulation of the behaviour of a nuclear reactor to inform safety
standards for new reactors, for example. This boils down to the question: how do we
translate our uncertain predictions into policy advice? We want to take into account
the uncertainty in our simulations and perhaps err on the side of caution by focusing
on, for example, the worst case among the plausible scenarios consistent with our
evidence. So how do we make decisions with sets of probabilities?

If you had a single probability function, you can act so as to maximise expected
utility. What is the analogue decision rule for imprecise probabilities? There are a
number of possibilities, each with drawbacks. Should you act to maximise minimum
expectation over probabilities in your set? Pick an option that maximises expected
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value with respect to some pr ∈P?18 Find some way to average over the set of ex-
pectation and maximise that?19 Elga (2010) argues that no imprecise decision the-
ory is even minimally adequate, although the consensus now seems to be that Elga
overstated his case (Bradley and Steele, 2014a; Chandler, 2014; Sahlin and Weirich,
2014). In any event, it is still true that providing IP with an adequate decision theory
is an unresolved issue. In a sense, it is not surprising that decision making with IP is
difficult: the whole point is that we are being careful to represent the full extent of
our lack of knowledge, and we shouldn’t expect decision making to be easy in such
a case. Indeed, it would appear to be a surprise if decision making were as easy as
it is in a case where we know the objective probabilities of the events, or have some
reason to believe our subjective estimates are on the right track.

6 Validation and IP

So where does all of the above leave the practitioner? What should someone who
works with computer simulations take away from this discussion of imprecise prob-
abilities? We’ll discuss the issues of interpretation and the problems in the sections
below, but first, I want to say something about where to situate IP in general. Some,
particularly in philosophy, seem to see IP as a rival to the standard Bayesian view
of subjective probability. I think this is a mistake. IP is a suite of tools, a range
of methods that extend and improve on the standard probabilistic tools. They are
provided in order to overcome some problems that the standard theory has with se-
vere uncertainty, careful propagation of uncertainty and giving appropriate weight
to serious dangers. Questions remain about when it is appropriate to deploy the ad-
mittedly more complex machinery of IP, and when it is best to stick with the simpler
tools of standard probability, but the above discussion of the “challenge problems”
highlights that many practictioners do see value in the use of IP.

6.1 Interpretations

We discussed four ways of interpreting the mathematical framework of IP: betting,
indeterminate belief, robustness analysis and evidence theory. Which of these will
be appropriate depends on your goals and how you are using the tools. Probabilities
show up in validation, and there is a question about how to interpret them.20 Your
general interpretative view on probabilities is going to inform what you think about
IP. If your inclination is to treat probabilities in a subjective Bayesian way, then
the betting approach seems a natural fit for interpreting imprecise probabilities. If,

18 This option, called “E-admissibility” by Levi (1974) – and discussed in depth in Levi (1986) –
is a popular one among some IP theorists.
19 See Bradley (2015) for some discussion of the options.
20 See Hájek (2011) for an introduction to interpretations of probability.
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however, your inclination is to treat probabilities as objective chances or objective
evidential probabilities, then perhaps the “indeterminate belief/chance” route is a
better fit.

If the imprecise probabilities arise from responding to the aleatory/epistemic un-
certainty distinction in an “unknown parameters” context (see section 3.1) then it
makes sense to see IP as a kind of “robustness analysis”.

The case of the “evidence theory” view of IP – lpr(X) represents the degree to
which the evidence supports X – is an interesting one. This interpretation is strongly
associated with Dempster-Shafer belief functions which are a special case of lower
probabilities. It seems that much of the literature on this topic doesn’t make a dis-
tinction between the “robustness analysis” view and the “evidence theory” view.

6.2 Problems

We looked at two kinds of problems for IP: problems related to updating and prob-
lems related to decision making.

It seems that the problems for updating aren’t all that problematic in the vali-
dation applications of IP. First, note that conditionalisation plays a relatively minor
role outside of the Bayesian approach. And even where conditionalisation does play
a role, the goal is to propagate the uncertainty. So if that yields large intervals of
output variables then that is a good thing: the uncertainty has been adequately prop-
agated. Take dilation: dilation occurs when you have two variables whose interac-
tion is unknown. By that I mean, when it is unknown whether they are positively
or negatively correlated.21 In a validation context, if you were in that situation, you
would want to know the range of possible system responses if the parameters were
positively correlated or if they were negatively correlated: you would want to see
that range of responses represented in your model output. Likewise for belief iner-
tia. If it is consistent with your evidence that X might not be affected very much by
conditioning on Z, then your model output should accommodate that possibility. In
short, the first two problems discussed are problematic when we interpret P(A|B)
as rational credence in A having learned B, but in a context where the probability
models are representing possible relationships between variables in a model, the
phenomena of dilation and inertia do not seem so problematic.

So what about decision making? If we are required to make a decision on the
basis of some simulation-based prediction that involves several underconstrained
parameters, it would be a mistake to make decision making too easy. Take a simple
example of deciding on how high to build your flood defenses. Let’s imagine that
you use a climate model to predict whether sea level rises will be small, moderate or
or large. We run a bunch of climate models, varying some unknown parameters, and
come up with a range of possible future scenarios. A precise probabilistic approach
might say that on average sea level rise will be moderate. Now, it might be tempting

21 For a more careful and rigorous characterisation of dilation, see Pedersen and Wheeler (2014).
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to build flood defenses that can cope with moderate rise but not with a large rise. It
might also be tempting to not bother with investing in defenses that can be extended
in the case of a large rise: after all, the models say that won’t happen. Of course, such
a decision maker has made a mistake in paying too much attention to the headline
“moderate rise” and not enough attention to the small print “range of scenarios”. By
taking seriously the task of propagating the uncertainty and presenting the full range
of scenarios consistent with the physical constraints, the IP approach highlights the
ranges of cases that the decision maker cannot discount in her deliberations. That
makes it harder to make a decision, but it does so in a way that will improve the
decisions made. Of course, one can go too far: the range of climate scenarios con-
sistent with our models range from ice age to everybody dies of heatstroke. It’s
hard to make any sort of decision that will lead to good outcomes across the board
there. But propagating that uncertainty, presenting the “non-discountable envelope”
of scenarios, prevents the decision maker from being misled by the headline model
average.

7 Conclusion

Imprecise probabilities can provide an expressively rich and sophisticated theory of
uncertainty that builds on and extends orthodox probability theory. The formal foun-
dations of IP are fairly solid although there are still some conceptual sticking points
that need work. Such a theory has the potential to find many useful applications in
the field of computer simulation validation.
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