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Abstract

This paper considers a puzzling conflict between two positions that
are each compelling: (A) it is irrational for an agent to pay to avoid
‘free’ evidence, and (B) rational agents may have imprecise beliefs. An
important aspect of generating this conflict is resolving the question of
how rational (imprecise) agents ought to make sequences of decisions
– we make explicit what the key alternatives are and defend our own
approach. We endorse a resolution of the aforementioned puzzle – we
privilege decision theories that merely permit avoiding free evidence
over decision theories which make avoiding free information obligatory.
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1 Introduction

If evidence is available for ‘free’1, it is presumably a good idea to pursue
that evidence and take it into account when making decisions. Good (1967)
proves as much for the case where Your2 degrees of belief are precise. That
is, Good proves that when Your beliefs or credence can be represented by
a single probability function, free evidence cannot be detrimental. Good
proves that, under standard conditions, Your expectation increases (or at
least cannot decrease) if You pursue free evidence.3

In the case where Your credence is imprecise, however, no such nice result
exists. Indeed, several authors have shown that, in such cases, You may
effectively pay to avoid free evidence (Kadane, Schervish, and Seidenfeld
2008; Grünwald and Halpern 2004). These examples rely on the phenomenon
of dilation (Seidenfeld and Wasserman 1993; Pedersen and Wheeler 2014).
What happens in dilation is that conditionalising on some evidence can cause
an event whose prior probability was sharp to have an unsharp posterior
probability. This ‘fuzzying’ of Your degrees of belief may lead to Your paying
to avoid free evidence. This paper investigates the puzzle suggested by this
result.

Let us quickly set the scene. Many have argued, convincingly, that rational-
ity permits imprecision: a rational agent may have incomplete preferences
that are best represented by a set of probability- and utility-function pairs,
rather than a single, precise such pair.4 On the other hand, rationality surely
requires that an agent not pay to avoid free evidence. If all plausible decision
theories for handling imprecision have the consequence that You may pay to
avoid free evidence, we have a contradiction, and must consider which of the

1What exactly it means for evidence to be free will be discussed later.
2‘You’ is the arbitrary intentional agent who is under discussion. This practice begins,

appropriately, with Good.
3A posthumous publication of Ramsey’s work contains a precursor of the theorem

(Ramsey 1990). In the preamble to the publication, Sahlin also notes a precursor in
Savage (1972 [1954]). Moreover, Kadane, Schervish, and Seidenfeld (2008) cite a version
of the theorem in Raiffa and Schlaifer (1961).

4Formal treatments of imprecise probabilism can be found in Walley (1991) and Au-
gustin et al. (2014). Philosophical defenses of the view can be found in Levi (1974), Joyce
(2005) and Sturgeon (2008). Note that this paper focuses on imprecise beliefs, and we as-
sume utilities of basic outcomes are precise. Moreover, we restrict attention to imprecision
as represented by sets of probabilities, but we do not deny that there are alternative rep-
resentations of imprecision/uncertainty, such as Dempster-Shafer functions or upper and
lower probabilities. For a thorough analysis of the different representations of uncertainty,
see Halpern (2003).



premises should be given up.

The next section presents the apparent trilemma in more detail: we initially
outline the set-up for, and statement of, Good’s theorem, and show, by
example and in line with other authors, that his lesson about the invariable
goodness of free evidence does not straightforwardly extend to the imprecise
context. While not an original aspect of the paper, we think it important to
carefully explain Good’s reasoning about free evidence, and its prima facie
extension to the imprecise realm, because this is a noteworthy and interesting
issue for decision theory that deserves attention. We go on to clarify the
premises of our proposed trilemma. This serves to highlight the main issue
of the paper: whether all plausible decision theories for handling imprecision
do in fact fall afoul of free-evidence intuitions.

In order to discuss the commitments of different decision rules regarding free
evidence, it is necessary to first elaborate, in Section 3, how You should
negotiate a dynamic- or sequential-decision problem, i.e. a decision problem
that involves choices both now and in the future. We do not dispute the
orthodox sophisticated-choice approach, but we show that it has not been
adequately spelled out in the current literature, and the missing details leave
room for controversy that is relevant to our free-evidence trilemma. So we
effectively introduce and argue for our own version of sophisticated choice
for the imprecise probabilist. In a sense, this middle section is the most
important contribution of the paper.

Section 4 then examines an important, perhaps even the only plausible, de-
cision rule for handling imprecision; this is the maximally permissive non-
dominated-set (NDS) rule. The NDS rule does not preclude paying to avoid
free evidence, but we prove that it at least never mandates such payment.
Section 5 comments on how this result fits into the broader decision theory
literature on dynamic coherence. In particular, we note that previous work
in the literature shows that no decision rule can do better than the NDS rule
with respect to the pursuit of free evidence. Section 6 summarises our stance
on the trilemma.

2 Good’s theorem and troubles for the imprecise prob-
abilist

I.J. Good showed that it always pays in expectation for the precise proba-
bilist to pursue free evidence. The proof can be found in Good (1967). A key
assumption is that You conform to standard Bayesian decision theory, i.e.,
You are an expected utility maximiser and update Your beliefs in line with



the rule of conditionalisation.5 Good’s result accords with intuitions about
seeking evidence and experimentation being advantageous. Indeed David
Miller (1994) notes that one of A.J. Ayer’s two main criteria for a successful
account of scientific method is that the account should advise scientists to
pursue free evidence. (The second criterion is that the account should ad-
vise the scientist to base inferences on all the evidence available.) Bayesian
decision theory thus meets Ayer’s standards because it is not inconsistent
with the two criteria (notwithstanding Miller’s arguments to the contrary).
Carnap also discussed what he called the ‘Principle of Total Evidence’ which
amounted to the claim that reasoners should not ignore available evidence
when estimating a probability.6

The problem set-up for the proof is as follows: There is a partition of the
state space H1, . . . , Hr and some acts A1, . . . , As which can have different
payouts for the different events Hi. Your utility for an act in a particular
event is: U(Aj(Hi)). Your credences over the events are Pr(Hi). There is
another partition of the state space E1, . . . , Et. You are offered the chance
to learn which Ek obtains. Pursuing the new evidence has no disutility
associated with it so the utilities of the basic outcomes in the decision problem
are the same whether or not You learn. This is essentially the meaning
of free evidence.7 Good shows that, under these assumptions, opting for
learning which Ek obtains has at least as high expectation as not learning,
and learning always has higher expectation when it is possible that the new
evidence may change Your choice of act amongst A1, . . . , As.

The idea behind the proof is illustrated in Table 1.8 Not learning effectively
5The requirement that updating be by conditionalisation can be generalised: Skyrms

(1990) and Huttegger (2013).
6Good in fact claimed that his theorem shows that Carnap’s ‘Principle of Total Evi-

dence’ (PTE) is a consequence of Bayesian decision theory. We think this confuses the
maxim that ‘one should always base one’s beliefs on the totality of one’s evidence’ with the
maxim that ‘one should always seek new potential evidence if it is cost-free’. The former
maxim, the PTE, concerns the set-up of a Bayesian model, or else it is simply an aspect of
probabilism (cf. Miller (1994), p. 159). By contrast, the second maxim is a consequence
of Bayesian decision theory.

7Note that this condition excludes salient cases where apparently free evidence is not
expected to be beneficial, such as Your friend offering to tell You the end of the novel You
are reading, or the details of Your surprise party. In these cases, learning is not in fact
free, if it is properly modelled, because the knowledge changes the utility of the outcomes
directly.

8Strictly speaking, each cell of the columns labelled E1 or Et should look like this:∑
Pr(Hi|E1)U(A1(Hi ∩ E1)) since those are the basic elements of the space. This would

have made the table much more unwieldy, and not added to the exposition. In short, we
have made the assumption the utilities of the consequences of each act are not dependent



E1 . . . Et Average

A1
∑

P (Hi|E1)U(A1(Hi)) . . .
∑

P (Hi|Et)U(A1(Hi))
∑

P (Hi)U(A1(Hi))
A2

∑
P (Hi|E1)U(A2(Hi)) . . .

∑
P (Hi|Et)U(A2(Hi))

∑
P (Hi)U(A2(Hi))

...
. . .

...
As

∑
P (Hi|E1)U(As(Hi)) . . .

∑
P (Hi|Et)U(As(Hi))

∑
P (Hi)U(As(Hi))

Table 1: The idea behind the proof
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Figure 1: A simple decision problem

means choosing among the averages of the acts conditional on each Ek. Your
expectation is thus the maximum value in the final ‘Average’ column. Your
expectation for learning, on the other hand, is the average of the maximums
in each of the columns E1, . . . , Et. In short, learning is always at least as
good as not learning because the average of maximums is always at least as
high as the maximum average.

Consider the following simple example, depicted in figure 1. Note that the
squares indicate choice nodes : places where You must make a choice; and
the circles indicate chance nodes : uncertainty that is then resolved one way
or another.9 There are two urns labelled X and Y . You believe that urn X
contains 10 black marbles and that urn Y contains 10 white marbles. One
urn will be selected at random by the toss of a fair coin and a marble drawn

on which Ek occurs, given Hi. Nothing important hangs on this simplification of the
example.

9One can think of these circular chance nodes as ‘Nature’s choice nodes’.



from it. You are offered a 2 to 1 bet on black: if black is drawn You end up
with 3 and if white is drawn You lose your stake of 1. It should be obvious
that learning (i.e. ‘down’ at choice point 0) has higher expectation in this
case: if You were to learn that the draw is from X, You would bet on black
and predict a win of 3, and if You were to learn that the draw is from Y ,
You would refrain from betting and receive 0. Thus Your expectation would
be 0.5 × 3 + 0.5 × 0 = 1.5, which is greater than 1, the expected utility of
not learning (since if You chose up at node 0 You would choose to bet).

It is worth noting that Good’s proof concerns the expected value of free
evidence. It may be the case that You ‘get unlucky’, and Your expected
utility in fact goes down upon receiving some evidence. For instance, You
may learn that the draw is from Y in our example, giving an expectation of
0 (since if You learned Y You would choose not to bet), which is of course
less than 1. This is a possible eventuality; nonetheless, the expected utility
of learning free evidence (i.e. before a particular piece of evidence is actually
received) is greater than or equal to not learning.

Consider a slightly different example: You believe that urn X definitely
contains 8 black and 2 white marbles, and that urn Y contains 2 black and
8 white. Again, learning which urn is drawn from has higher expectation,
as You would tailor Your choice of ‘Bet’/‘Don’t bet’ to the new evidence, as
before. Here You would not be guaranteed the prize, by Your own lights,
even if You learn that the draw is from urn X, but Your choice will accord
with what You take to be the proportions of balls in the urn, whatever urn
is revealed, and so overall You have a higher expectation.

There is a problem when we try to apply this to the imprecise case. That
is, where Your belief is represented by a set of probability measures, P ,
rather than just one measure. Call this set Your representor. Imagine a
scenario similar to the last one. Imagine You believe that there are a total
of 10 black and 10 white marbles distributed somehow among the urns X
and Y . Each urn contains 10 marbles. An urn will be selected at random
by flipping a fair coin, and a marble drawn from it. Using X and Y to
refer to the propositions ‘the marble is drawn from urn X’ and ‘the marble
is drawn from urn Y ’, respectively; and using B and W to stand for the
propositions ‘the marble drawn is black’ and ‘the marble drawn is white’,
respectively; in the spirit of imprecise probabilism, the following is a plausible
characteristic of Your belief representor, P : Pr(B|X) = 1− Pr(B|Y ) for all
Pr ∈ P . As such, Your credences before learning regarding the colour of
the marble drawn are as follows: P(W ) = {0.5} = P(B). You believe
that the number of white marbles and the number of black marbles are



equal and that over the two urns their probabilities average out. It seems
plausible that Your conditional credences are, however, imprecise: You have
no information about how the marbles are distributed between the urns, and
so Your representor, P , plausibly includes the possibility that urnX certainly
contains only white marbles and also the possibility thatX certainly contains
no white marbles, and everything in between. That is, P(W |X) = P(B|X) =
P(W |Y ) = P(B|Y ) = {0, 1

10
, . . . , 9

10
, 1}, or, if convexivity were mandated (as

per Levi (1974) and Levi (1980)), Your representor would plausibly have
P(W |X) = [0, 1], and likewise for the other conditional attitudes.10 For
reasons of notational convenience we will stick to using [0, 1] to represent the
aforesaid imprecise conditional beliefs. So learning which urn is drawn from
dilates Your probability for white from 0.5 to [0, 1], and likewise for black.
Note that this analysis of the problem assumes the standard rule for updating
imprecise beliefs, known as generalised conditioning, which basically amounts
to pointwise conditioning: After learningX, say, {Pr(−|X) : Pr ∈ P} is Your
new representor.11

Recall that You are offered a 2 to 1 bet on black: if black is drawn You win
3 and if white is drawn You lose 1. Before learning, it is clear that this bet
is advantageous and You should take the bet, rather than stick with the sta-
tus quo. (As before, Your expectation for not learning, given the credences
described above, is 1.) If You choose to learn, on the other hand, Your expec-
tation for the bet will inevitably dilate from {1} to [−1, 3]. Whether or not
the revealed urn is X or Y , the bet no longer has higher than or equivalent
expected utility to the status quo: the two acts in each case become incom-
mensurable. Pursuing free evidence is no longer straightforwardly better for
You, even though it may lead to You changing Your choice of option.

Now imagine the same problem, except that choosing not to learn comes
with a small penalty of δ (where δ > 0). This makes the problem more
vivid, because now, if You choose not to learn, You are in fact paying to
avoid learning. Figure 2 depicts this revised problem. You face a choice at
the initial node (labelled 0) between learning and paying not to learn. let’s
assume Your credences are as before. Learning leads to evidence about the
coin flip – whether the urn to be drawn from is X or Y . As per Good’s
theorem, the final decision problem is constant, whatever happens, except
that the option of not learning involves δ utility subtracted from all outcomes.

10Whether convexity is mandated when in fact the objective probability of drawing
white given X could not possibly be, say, 6

21 , is a tricky question and one we shall ignore.
Nothing in our discussion hinges on the sets of probabilities being convex.

11Refer to Bradley and Steele (2014b) for further discussion of this example, in particular
whether dilation is peculiar from a purely epistemic point of view.
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Figure 2: The problematic decision problem

If You choose not to learn, You effectively pay δ to avoid free evidence.12

Imagine, for instance, that You conform to the so-called gamma-maximin
rule, which holds that one should always choose the option that has the
largest minimum expected utility.13 You would reason as follows: if learning
is chosen, there will inevitably be a choice between betting, with expected
utility [−1, 3], and not betting, with expected utility 0. The latter has the
greater minimum expected utility, so learning effectively leads to not taking
the bet, which has 0 utility. (This process of working backwards through a
decision problem is referred to as sophisticated reasoning or backward induc-
tion. All of the examples here have involved sophisticated reasoning. We say
more about this in the next section.) Not learning, on the other hand, will
mean that the bet is chosen, and this has expected utility 1 − δ from the
initial vantage point. Assuming δ < 1, not learning is therefore preferable.
You thus pay to avoid free evidence.

By way of setting the stage for the remainder of the paper, let us be explicit
about the proposed trilemma:

12This is really a case of better-than-free evidence. Strictly speaking, learning does
change the utilities of the outcomes, so this is not really free evidence, as defined earlier.
However, the changes are uniformly for the better, so it’s still the case that You do not
pay to acquire the evidence. We call taking the ‘not learning’ branch ‘paying to avoid free
evidence’ when we should really say ‘choosing not to learn better-than-free evidence’.

13Gärdenfors and Sahlin (1982), for instance, defend this rule. Seidenfeld (2004) refers
to the rule as gamma-maximin, and we follow this terminology here.



P1 Paying to avoid free evidence is irrational.

P2 Incomplete preferences are not irrational, and can be represented by
sets of probabilities and utilities. In other words, imprecise probabilism
is permissible.

P3 All plausible decision theories for handling imprecision sanction paying
to avoid free evidence.

As mentioned earlier, P2 is defended elsewhere. We will revisit P1 later, but
let us simply note, for now, that it is hard to conceive how ‘money’ spent
on avoiding free evidence could be money well spent. Decision theory aside,
any sensible person would surely ignore new free evidence that they might
obtain, if it is really unhelpful, rather than pay to remain ignorant about it.

The initial focus of this section is the final premise, P3. What we have illus-
trated above is just that a very specific type of imprecise probabilist – one
whose belief-updating rule is generalised conditioning and who chooses ac-
cording to gamma-maximin – chooses making a payment over receiving free
evidence. It remains to be seen, however, whether this is also a consequence
of other decision theories for handling imprecision. Indeed, we now investi-
gate whether there may be alternative generalisations of standard Bayesian
decision theory that do not recommend this unintuitive course of action.

We will focus exclusively on alternative decision rules. That is, we do not here
consider alternative rules for updating belief, but rather assume generalised
conditioning throughout. As mentioned above, this is arguably the most nat-
ural generalisation of Bayesian conditioning for the imprecise context. Stated
in full, the rule holds that Your posterior belief in some proposition H, after
learning the proposition E, is just the set of conditional probabilities pertain-
ing to all probability functions in Your representor for which the conditional
is defined:

P(H|E) = {Pr(H|E),Pr ∈ P ,Pr(E) 6= 0} (1)

This is the rule we implicitly assumed for the example above, and it is subject
to dilation. Of course, one might suggest that, given that dilation seems to
be directly implicated in paying to avoid free evidence, we should explore
alternative rules for updating imprecise beliefs that might preclude dilation,
and its attendant problems. Elsewhere we do explore this possibility,14 but
this is not our focus in this paper. Note just that we do not regard this to be
a fruitful avenue for developing imprecise probabilism; dilation is not a good
reason for departing from generalised conditioning.

14See Bradley and Steele (2014b)



So, as mentioned, we restrict our attention to decision rules, and hold fixed
generalised conditioning as the belief-update rule. The gamma-maximin rule
assumed above is already criticised on other grounds (Seidenfeld 2004), so
there is hope that the bad results concerning dilation are specific to this rule.
In what follows, our discussion of decision rules proceeds under the assump-
tion that there is already an appropriate representation of Your beliefs and
desires. In particular, here we assume that You have imprecise probabilistic
beliefs, i.e. Your belief representor is a set of probability distributions, P , and
yet, for simplicity, You have a precise utility function over basic outcomes.15

The claims of this paper pertain to this assumed set-up – imprecise probabil-
ities yet precise utility function – but we do not anticipate any problems in
extending the results to the case of both imprecise probabilities and utilities.
Before getting to the specifics of the various decision rules, however, it is
important to first specify how, in general, one should negotiate a sequential-
choice problem, since the question of whether or not to pursue free evidence
is a problem of this kind.

3 Sophisticated choice for the imprecise probabilist

Recall that the problem we set up in the previous section involved several
ingredients: first, a particular update rule; second, a particular decision rule;
and third, a particular approach to sequential choice. In the example we
had: generalised conditioning, gamma-maximin, and sophisticated choice.
We take the first and third of these for granted throughout. We will see, in
a moment, an alternative to gamma-maximin that fares better in the kind of
problems we are looking at. But first, we want to spell out a little more care-
fully what sophisticated choice amounts to in the current setting. For precise
probabilities, sophisticated choice is the orthodoxy,16 but for imprecise prob-
abilities, it has not been fully fleshed out what sophistication means. We
take the following discussion to flesh out the correct version of sophisticated
choice.

15One way to conceive of the representation is as follows (cf. Levi (1986) and Kaplan
(1996)): You have incomplete preferences which can be identified with a set of complete
preference orderings that are each possible expected-utility extensions of the incomplete
preferences. These extended orderings each correspond to a precise probability and utility
representation. Identifying a partial order with a set of probability–utility pairs is not
straightforward but it can be done: see for example Seidenfeld, Schervish, and Kadane
(1995). Overall, You are thus represented by the set of these probability-utility pairs. On
the basis of Your probability-utility pairs, the various decision rules specify which acts
among those available are choice-worthy.

16Advocates of the sophisticated approach to sequential choice include Seidenfeld (1988),
Levi (1991) and Maher (1992).



3.1 Sophisticated choice, user-friendly version

Recall the sequential-choice reasoning in the previous section. You look at
the terminal nodes and work out which act maximises minimum expectation
with respect to Your representor. This done, You now treat those terminal
nodes as if the choice were fixed. From the earlier node, You treat the earlier
choices as if they were choices that determinately led to the gamma-maximin-
best act. You effectively act as if You know Your future self will choose that
way.

Let’s recast the imprecise decision problem we discussed earlier as a group de-
cision problem where there is a common utility for the agents in the group.17

Let’s also state, in accordance with the suggested decision rule, that the
group chooses by evaluating an act by the lowest expected value assigned to
it by some committee member. Recall figure 2. Each agent knows that if the
group ends up at node 1, the group choice will be to bet since every member
agrees that the expected value of betting at node 1 is 1− δ. Each agent (at
node 0) also knows that if the group chooses to learn and ends up at node 2,
the group will choose not to learn, since there is a committee member who
assigns expected value −1 to betting: the agent who thinks all the black
marbles are in urn Y (call this agent Mr. White). Likewise, at node 3 the
group will choose not to bet since there is an agent who evaluates betting
at −1: the agent who thinks all the black marbles are in urn X (call this
agent Mrs. Black). So at node 0, any agent evaluates choosing to learn as a
fifty-fifty gamble between two refusals to bet, resulting in expected value of
0. Thus every committee member agrees at node 0 that paying not to learn
is better, given what they believe about how the committee will choose at
later nodes. This is the problem of free evidence for the imprecise probabilist
recast as a problem for group belief.

But consider the following alternative reasoning. Note that each committee
member is a precise probabilist, and as such, Good’s theorem applies: each
committee member thinks that learning increases expectation. So each com-
mittee member agrees that choosing to learn is uniquely permissible. Since
any plausible decision rule should respect unanimity of this kind, there is no
problem of free evidence for the imprecise probabilist.

What has gone wrong? We have two ways of reasoning about the decision
problem that You or Your credal committee face, and they seem to give

17Levi (1986) and Levi (1999) has argued that imprecise probabilities are an appropriate
model of group belief, and that individual agents can be conflicted in the same way that
groups can. See also Seidenfeld, Kadane, and Schervish (1989).



conflicting conclusions. To see what goes wrong with the latter kind of rea-
soning, we need to take a detour into backward induction, through Greek
myths, game theory and group decision making.

On his way back from Troy, Odysseus’ ship must sail past the sirens. Circe
has warned Odysseus that the sirens’ song will drive him and his crew mad
and cause them to crash their ship on the treacherous rocks thereabouts.
Wily Odysseus orders his crew to stop their ears with beeswax, Odysseus,
however, is curious to hear what the sirens’ song sounds like. Odysseus has
the option of ordering his crew to tie him to the mast or to be left unhindered.
Possible courses of action once within range of the sirens are for Odysseus to
stay onboard or to dive into the sea and drown. Odysseus would rather not
be tied to the mast, but prefers that to drowning. He knows that the sirens
will cause him to jump overboard if he remains unhindered. So he opts to
have himself tied to the mast, in order to stop him jumping overboard at a
later time.

Let’s be a little clearer about Odysseus’ thinking. There are two relevant
times at which Odysseus must make a choice: he must decide (now) whether
to be tied to the mast, and later whether to jump into the sea and drown. If
he is tied to the mast now, he will not be able to jump overboard. Also, if
he is not tied to the mast, the sirens will drive him mad and make him jump
overboard. In a sense, Odysseus’ most preferred option is to not be tied to
the mast, but then to remain on the boat when in range of the sirens. The
problem is that he knows now that his future self will not stay on board if he
is unhindered. Odysseus is essentially treating his future self as an agent he
does not have full control over, and treating his decision problem as a kind of
game: his current self versus his future self. Given what he knows about his
future self’s preferences (as influenced by the sirens’ song), his choice (now)
should be that which gets him the best outcome on the assumption that his
future self will act in accordance with his future preferences. So he should
tie himself to the mast now so that his future self does not have the option
to jump into the sea. This is an example of backward induction: a reasoning
strategy that is ubiquitous in game theory.

To reiterate: Odysseus’ most preferred option would be to not be tied to the
mast, but then to refrain from jumping overboard.18 He does not, however,
act on this preference, because he is sophisticated enough to take into account
facts about his future choices that are not under his current control. This
makes Odysseus a sophisticated chooser as opposed to a naïve chooser who

18Compare: I prefer that both I and my opponent cooperate to both defecting in a
Prisoners’ Dilemma.



would act on his current preference for not being tied up, and ignore the
inevitable future bad consequences of such actions. Sophisticated choice is
clearly better than naïve choice: it simply amounts to not ignoring pertinent
facts about Your future choices.

Let’s go back to the second line of reasoning discussed earlier that seemed
to conclude that all the committee members agreed that learning was best.
Consider the two extreme committee members Mrs. Black and Mr. White
who think that all the black (white) marbles are in urn X. Mrs. Black and
Mr. White make up a committee that must collectively make decisions on
whether to learn and how to bet. Mrs. Black thinks that learning increases
expectation because if X is true betting is the right option and if Y is true
not betting is the right option. Mr. White thinks that learning increases
expectation because if X is true not betting is the right option and if Y
is true betting is the right option. Now consider things from Mrs. Black’s
point of view. She is reasoning at node 0 about which option she prefers.
She knows that if the committee arrives at node 1, she and Mr. White will
disagree about what to do, and she is not sure about how such disagreement
will be resolved. So at node 0, Mrs. Black cannot discount the possibility
that at node 1 the committee will choose not to bet (despite that being a bad
option according to Mrs. Black). So what Mrs. Black and Mr. White agree
on is not that the group decision should be to choose to learn, but merely
that if each of them individually were in control of the future choice, learning
would be the right choice. That is, each committee member only believes
learning is the right choice because of what the post-learning choices would
be if that committee member was in charge. Given each committee mem-
ber’s uncertainty about how future choices will in fact be resolved, it is not
clear that the committee will make the ‘correct’ choice from that member’s
perspective. And thus, the members do not agree that learning is necessarily
the right choice, given what they know about the committee’s future choices.
And indeed, if the committee members knew that the committee resolved
disagreements by using gamma-maximin, they would agree that not learning
is the better group decision.

3.2 Modelling assumptions

This section serves two purposes: we introduce some formalism that we’ll
need later, and we also make clear some assumptions we make in what follows.

First, we shall be using the language of choice functions which take as in-
puts the available options and output the set of choice-worthy or admissible
options. For the precise probability case, the standard choice function is



C(O1) = Bet; C(O2) = Bet; C(O3) = Don’t Bet

X Y

Don’t Learn 〈3, B;−1,W 〉 〈3, B;−1,W 〉
Learn 〈3, B;−1,W 〉 0

Table 2: Tabular represention of problem in figure 1

the function that takes a set of options and outputs the set of options that
maximise expected utility.

In accordance with our sophisticated choice approach, Your current options
are the acts available to You at the current time, and not paths through the
decision tree or plans of how to act at the current node and all future nodes.
Further, from Your current perspective, You take how You anticipate You
will act at future nodes to be fixed: to be part of the state space of Your
current decision.

Let Oi be the options available at node i. Let’s consider the simple case of
the precise example in figure 1. So, for i = 1, 2, 3, Oi is the set “Bet, Don’t
Bet”. And O0 – the options at node 0 – is “Learn, Don’t Learn”. The choice
function summarises the options that would be chosen at the node, so for
node 1, C(O1) = Bet. And likewise C(O2) = Bet and C(O3) = Don’t Bet.
These facts about future choices should be encoded in the state space of Your
decision problem at node 0.19 As such, this problem should be summarised
as per Table 2. The events X and Y have probability 0.5 each. Note that the
outcomes in this table are determined by the outcomes that the future choices
will lead to. Some of these outcomes are lotteries. The lottery 〈3, B;−1,W 〉
should be read as follows: ‘Win 3 if B, lose 1 if W ’. By assumption (recall
figure 1), the lotteries in the X column reduce to a sure outcome of 3, since
Pr(B|X) = 1, and the lottery in the Y column reduces to a sure outcome of
−1, since Pr(B|Y ) = 0.20 Now we again apply the choice rule to this decision
problem, and thus determine C(O0). As noted earlier, learning has a higher
expected utility (EU = 1.5) than not learning (EU = 1).

19The implicit assumption here is that You predict Your future self to be rational, i.e. an
expected utility maximiser, and to have beliefs and desires that accord with Your current
self.

20Note in this example Your credences are such that the lottery either has expected
value −1 or 3 depending on whether Urn X or Urn Y is being drawn from, since Your
conditional credences are extreme. But we present the outcome as the lottery to fit with
further examples where You do not have extreme credences.



C(O1) = Bet; C(O2) = Don’t Bet; C(O3) = Don’t Bet

X Y

Pay not to learn 〈3− δ, B;−1− δ,W 〉 〈3− δ, B;−1− δ,W 〉
Learn 0 0

Table 3: Tabular represention of problem in figure 2 using gamma-maximin

Consider a further example. Table 3 represents Your node-0 decision prob-
lem as depicted in figure 2, with the assumption that the gamma-maximin
decision rule will be applied at any future choice nodes.

Both of the above examples obscure an important fact about the general case
of imprecise sophisticated choice. That is that a choice function may fail to
determine a unique admissible act. Let’s go through the choice problem
again, but using a different choice rule. Let’s imagine You use the permissive
‘non-dominated-set’ (NDS) decision rule: all Your choice function does is
rule out options that are expectation-dominated. We discuss this rule in
more detail in the next section. You are at node 0 reasoning about how Your
future selves will behave. Your node 1 self is easy: the acts available – ‘Bet’,
‘Don’t bet’ – each have precise utility 1 − δ and −δ respectively. So Your
node-1 self will choose to bet. Now consider Your node-2 self. Your beliefs at
node 2 have dilated, and with them, Your expectations. The expectations for
‘Bet’ and ‘Don’t bet’ are [−1, 3] and 0, and neither act expectation-dominates
the other. So from node 0, You do not know how Your node-2 self will act.
The same reasoning goes for node 3. We can thus represent Your node-0
decision problem as per Table 4. Note that choice function C can return a
set of acts.

C(O1) = Bet; C(O2) = {Bet,Don’t Bet} = C(O3)

X Y

Pay not to Learn 〈3− δ, B;−1− δ,W 〉 〈3− δ, B;−1− δ,W 〉
Learn {0, 〈3, B;−1,W 〉} {0, 〈3, B;−1,W 〉}

Table 4: Tabular represention of problem in figure 2 for NDS rule

So how should Your node-0 self reason about these unknown future choices?
How should learning be valued at node 0? The choice to learn amounts
to a fifty-fifty chance of one or another future decision problem, neither of
which You know how You will solve. The next section presents our answer



to this question. The presentation may seem complicated, but we maintain
that the complications are a feature of imprecise decision theory when it
comes to sequential choice. As mentioned, this is one aim of our paper: to
make explicit how imprecise decision rules should be characterised in the
sequential-choice setting. While others (notably Kadane, Schervish, and Sei-
denfeld (2008) and Seidenfeld (2004)) have considered how key rules fare in
particular sequential-choice problems, with similar findings to our own, no
one has provided a clear account of what it means to do backwards induc-
tion where numerous incommensurable options are choice-worthy at future
nodes.21

4 The non-dominated-set rule

The latter part of the discussion in the previous section alluded to an im-
precise decision rule that is less ‘opinionated’ than the gamma-maximin rule.
Roughly, if members of Your credal committee disagree in their preference
between options, then Your overall preference between these options is simply
indeterminate, and there is no saying which will be chosen in a decision be-
tween them. This is effectively the non-dominated-set (NDS) rule, otherwise
known as Sen-Walley maximality. We will define it in more precise terms
shortly. The NDS rule is the most permissive decision rule on the table: it
would be a serious flaw of any decision rule that it sanctioned performing
some action when a dominating action was available (i.e. if the choice rule
made permissible something outside of the NDS choice set). This makes NDS
interesting for two reasons. First, it is a very plausible decision rule, as it
does not contrive a preference between incommensurable options where there
is none, so to speak. Second, being the most permissive rule, NDS is pivotal
in our discussion. If even the NDS rule made paying to avoid free information
obligatory, then this would be a killer blow to imprecise probabilism, since
any other less permissive rule would inherit this flaw.

So how the NDS rule fares in ‘free evidence’ situations is more important that
how gamma-maximin fares in those situations. In what follows, we first give a
formal definition of the NDS rule (subsection 4.1) and then we prove a result
for the rule that relates to the third premise of our trilemma (subsection 4.2).
The result is not surprising given the previous work mentioned above, but no-

21In fact, some of Seidenfeld (2004)’s less central remarks are at odds with our account
of sophisticated choice below: his discussion on pp. 85-6 does not respect the fact that
individual ‘committee members’ (cf. Section 3.1) do not have control over the options
that will be chosen at future nodes, that this is rather within the purview of the whole
committee.



one has yet given a treatment as general as ours, nor as explicit with respect
to sequential-choice reasoning.22 We provide such a general treatment and
articulate the correct albeit controversial approach to sophisticated choice.

4.1 Formal definition

In formal terms, the NDS rule can be defined in terms of its ‘choice set’
(i.e. the set of admissible options that it returns) as follows:

N(O) = {Aj ∈ O : ∀Ak ∈ O,¬[Aj <EU Ak]}

This needs some unpacking. The meaning of Aj <EU Ak that accords best
with the current literature is as follows: option Aj has lower expected utility
than option Ak according to all probability distributions in Your representor.
In such a case, Aj is strongly dominated by Ak and is thus not choice-worthy.
This definition of <EU will not quite do, however, given the complications
that can arise for the imprecise probabilist making sequential decisions, that
we canvassed at the close of the previous section.

In order to spell out an adequate definition of <EU and thus the NDS rule for
sequential contexts, it helps to return to our example of the imprecise prob-
abilist facing the decision problem in figure 2. In accordance with backwards
induction, we determine what will be chosen at the later nodes: it is clear
enough that C(O2) = C(O3) = {Bet, Don’t Bet} by the NDS rule, since nei-
ther betting nor not betting EU -dominates the other.23 Indeed, thinking in
terms of our credal committee: Mrs. Black and Mr. White disagree on what
choices at nodes 2 and 3 maximise expected utility. As before, C(O1) = Bet,
since all committee members agree that this option at node 1 has higher
expected utility. The upshot is that the problem facing the NDS agent (the
credal committee) at the initial node is in fact the problem represented in

22In particular, see Kadane, Schervish, and Seidenfeld (2008) Sequential Decision Prob-
lem 2 for a decision problem similar to our example in figure 2. Seidenfeld (2004) gives
a general treatment of the free-evidence problem for both gamma-maximin and Levi’s
e-admissibility imprecise decision rule. The latter rule is very similar to NDS: An option
is e-admissible (and therefore in the choice set, unless a secondary criterion is invoked)
just in case it has maximal expected utility for at least one probability-utility pair in the
agent’s belief and desire representor(s). The set of e-admissible options is always a subset
of the NDS choice set, and in ordinary cases, where sets of probabilities and utilities are
closed and convex, the set of e-admissible options is in fact identical to the NDS choice
set; see Schervish et al. (2003). Our analysis below differs from Seidenfeld’s in that we
focus rather on the NDS rule itself, and we show how this rule needs to be extended to
accommodate possibilities that may arise in the sequential-choice setting.

23Recall that C(Oi) corresponds to the admissible choices at node i in our example
problem.



Table 4. Everyone in the committee sees, at node 0, that at nodes 2 and
3 there will be disagreement amongst the committee members, and either
betting or not betting could be chosen at those locations. So the choice set
for node 2 contains both the bet and don’t bet options, likewise for node 3.
Thus, the outcome of opting to learn – which is a mixture of the outcomes
of nodes 2 and 3 – amounts to a mixture of two sets of two future acts.

So our NDS agent faces the decision problem depicted in Table 4: the com-
plicated case involving outcomes with sets of acts and thus sets of utilities.
For each probability distribution Pri ∈ P (or each committee member i), the
evaluation of an act Aj (here learning) may thus amount to a set of expected
utilities.

Let us now continue with unpacking the statement Aj <EU Ak:

Aj <EU Ak IF
∀Pri ∈ P [EUi(Aj) <P EUi(Ak)]

EUi(Aj) is the expected utility of act Aj according to probability function
Pri. It can be a set of values if act Aj is not the terminal node of the decision
tree, because of Your uncertainty about Your post-Aj choices. Of course,
the problem now shifts to defining <P . All that has been stipulated about
<P is that, in the case where both EUi(Aj) and EUi(Ak) are singletons, <P

amounts to the simple ‘is less than’ relation for numbers. Thus, when Aj and
Ak lead to outcomes with precise expected utilities for each Pri, Aj <EU Ak

has its standard meaning. Given that the standard NDS rule appeals to a
strictly greater than relation, it makes sense to define <P as follows:

EUi(Aj) <P EUi(Ak) IF
supEUi(Aj) < inf EUi(Ak)

The relation <P is sometimes known as the relation of interval dominance.
This makes sense because it holds exactly when one utility interval is entirely
above another. Note that it does behave appropriately in the precise limit.24

24cf. Levi’s e-admissibility rule, which we denote L(O). Recall from footnote 22 that
options are in L(O) if and only if the option is maximal for at least one probability distri-
bution in Your representor. To account for the complications that arise in the sequential-
choice setting (outcomes that are sets of possible choices), we could augment Levi’s rule
as follows: for an option to be e-admissible, there must be at least one probability dis-
tribution in Your representor such that no other option interval dominates that option
according to that probability:

L(O) = {Ai ∈ O : ∃Pr ∈ P s.t. ∀Ak ∈ O ¬[EUPr(Ak) ≥P EUPr(Ai)]}



We can now finish working through the decision problem in figure 2 using
our fully-worked-out NDS rule. We have already established, via backwards
induction, that the decision problem at the initial node is given in Table 4.
The question is whether learning EU -dominates not learning, or vice versa.
Consider just one of the extreme probability distributions – that of committee
member Mrs. Black – Pr1, where Pr1(B|X) = 1 and Pr1(B|Y ) = 0. For this
probability distribution alone, the lotteries in Table 4 will thus be evaluated
as per Table 5 below. Note that the lottery outcome in the X column is
evaluated as 3 (or 3− δ), since Pr1(B|X) = 1. Thus the lottery outcome in
the Y column is evaluated as −1 (or −1− δ).

C(O1) = Bet; C(O2) = {Bet,Don’t Bet} = C(O3)

X Y

Pay not to Learn 3− δ −1− δ
Learn {0, 3} {0,−1}

Table 5: Tabular represention of problem in figure 2 for the NDS rule, for
Pr1 (Mrs. Black)

To work out Mrs. Black’s evaluation of the acts in Table 5 (i.e. learning versus
paying not to learn), we need to generalise the idea of expected value to sets
of utilities. An informal characterisation of expected value is ‘the sum of
the probability weighted utilities’. So it’s the probability of the state times
the utility of the act in that state, summed over the states. To evaluate the
act ‘Learn’ in Table 5 above, we need a ‘sum of probability weighted utility
sets’. This means characterising what it means to weight a set of utilities
by a probability, and then what it means to add sets of probability-weighted
utility together. In other words, we need to evaluate:

EU1(Learn) = 0.5× {3, 0}+ 0.5× {−1, 0}

We will need to give an appropriate gloss on what × and + mean in this
context. We suggest that p× A = {pa : a ∈ A}. That is, the multiplication
is done to each element of A. As for A + B, we take this to mean {a + b :
a ∈ A, b ∈ B}. This is the full set of possible sums of elements of A and
B.25 This proposal for how to treat sums and products of sets of values can

This differs from NDS only in the order of the quantifiers. Clearly e-admissible options
are not EU -dominated; rather L(O) ⊆ N(O).

25If A,B are intervals (i.e. convex), and we interpret p as the degenerate interval [p, p],
then this proposal gives the same result as interval arithmetic (Moore, Kearfott, and Cloud



be motivated in the same way we motivated the NDS rule: this is the most
permissive plausible proposal for how to deal with arithmetic operations on
sets of values. So this approach is pivotal in the same sense that the NDS
rule is. Returning to the example, this gives:

EU1(Learn) = {−0.5, 0, 1, 1.5}

Paying not to learn has precise utility {1 − δ}. Thus it is not the case that
EU1(Learn) <P EU1(Pay not to learn), nor vice versa.26 Accordingly, just
by looking at Mrs. Black’s evaluation of the options (let alone the evalu-
ations of her fellow committee members) we see that neither learning nor
paying not to learn EU -dominates the other. So at the initial node, both
options are admissible by the NDS rule, i.e. C({Learn,Pay not to learn}) =
{Learn,Pay not to learn}. The NDS rule therefore sanctions paying not to
learn, but in this case, at least, the rule does not require or mandate paying
for ignorance.27 This is an improvement on the gamma-maximin rule.

4.2 A positive result

While we have seen that paying not to learn may be an admissible option,
according to the NDS rule, there is some good news: for this pivotal imprecise
decision rule, learning free evidence is always itself an admissible option.
That is, it is never the case that not learning or else paying not to learn
is uniquely admissible or obligatory, when learning free evidence is also an
available option.

The structure of the proof follows our working of the decision problem above,
but the idea here is to show that this analysis generalises to all decision
scenarios of the following form: Your beliefs may be imprecise, i.e. Your
belief representor, P , may consist of more than one probability distribution.
(Your utility function over basic outcomes is nonetheless precise.) You face
a decision as to whether to pursue free evidence, sensu Good (1967). As
before, it is a question of whether to make a choice between a set of acts now,
or else make the choice between the same set of acts (with basic outcomes
unchanged) after learning some evidence. We assume, for simplicity, that the
decision to be made now or after learning is not itself a sequential decision

2009). Since the >P relation depends only on the biggest and smallest members of A,B,
it treats nonconvex sets in the same way as their smallest convex cover.

26For δ < 1.5.
27Levi’s e-admissibility rule in fact gives the same result here: there is at least one

probability function in the representor, the one where Pr(B|X) = 0.5, for which both
learning and not learning have maximal expected utility in the sense stated in footnote 24,
so both options are in the choice set.



problem. For rhetorical reasons, the option of not learning is adjusted to
include a payment of some small δ. So You can either learn and then make
a decision, or You can pay to not learn and make the decision from a state
of ignorance.

This is the claim to be proven, with reference to the general decision problem
just described:

For the imprecise agent abiding by the NDS rule, learning free
evidence is always an admissible option. That is, not learning or
else paying not to learn free evidence is never uniquely admissible,
when learning is also an available option.

We start by summarising Good’s result. Let’s say we have acts whose out-
comes depend on which of the Hms is true. Call the acts the Ajs. We are
trying to work out whether it pays in expectation to learn which Ek is true.
The Hms partition the state space, as do the Eks. The expectation for not
learning is:

max
j

∑
m

Pr(Hm)U(Aj(Hm))

That is, You know You will pick the act that maximises Your utility after hav-
ing chosen not to learn. Using the fact that Pr(Hm) =

∑
k Pr(Ek) Pr(Hm|Ek)

and rearranging the order of summation, we have that this is equal to:

max
j

∑
k

∑
m

Pr(Ek) Pr(Hm|Ek)U(Aj(Hm)) (2)

Now consider learning some Ek. Expectation after learning Ek is:

max
j

∑
m

Pr(Hm|Ek)U(Aj(Hm))

So expectation for learning is the probability weighted sum of these expec-
tations: ∑

k

Pr(Ek)max
j

∑
m

Pr(Hm|Ek)U(Aj(Hm))

We can move the Pr(Ek) inside the summation so this is equal to:∑
k

max
j

∑
m

Pr(Ek) Pr(Hm|Ek)U(Aj(Hm)) (3)

These expressions for learning (3) and not learning (2) differ only in the
order of the summation and maximisation. So all we need to do to prove the



theorem is show that, for any function f(j, k), we have∑
k

max
j
f(j, k) ≥ max

j

∑
k

f(j, k)

Then if we consider f(j, k) =
∑

m Pr(Ek) Pr(Hm|Ek)U(|Aj(Hm)) we have the
result we wanted. So let’s consider the j that maximises

∑
k f(j, k), call it

j0. Clearly maxj f(j, k) ≥ f(j0, k) for any k. Thus∑
k

max
j
f(j, k) ≥

∑
k

f(j0, k) = max
j

∑
k

f(j, k)

That, in brief, is Good’s theorem.28

Returning to our own decision scenario: Let O denote the set of acts at the
initial node: ‘Learn’ and ‘Don’t learn’/‘Pay not to learn’. Let A denote the
set of acts for the decision problem that needs to be solved: ‘Bet’/‘Don’t bet’
(i.e. the acts that are the rows in Table 1). The possible evidence forms a
partition E: ‘Urn X’ or ‘Urn Y ’.

Now consider the plight of the imprecise agent employing our refined version
of the NDS rule, as outlined in Section 4.1. Assume Your representor, P , con-
sists of probability functions (a. k. a. committee members) Pr1,Pr2,Pr3, . . .
Take any one of these probability functions Pri. Quite simply, for this com-
mittee member i, we know from Good’s theorem itself that, if this committee
member were a one-person committee, learning is at least as good as not
learning. That is not necessarily the case, given our assumption of imprecise
probabilism – there may be other members in the committee. Nonetheless,
the acts in A that committee member i deems maximal at each of the re-
spective future choice nodes associated with learning, corresponding to each
Ek that may be learnt, will feature in the choice sets for these nodes (since,
by assumption, the NDS rule is applied at these nodes too.) Thus, when
we evaluate learning versus not learning for any committee member i, the
probability weighted average of utility sets for learning, as discussed above,
will be a set of utilities that includes a utility that is guaranteed, by Good’s
theorem, to be at least as good as the utility of not learning. So for any com-
mittee member i, not learning does not (strictly interval-)dominate learning.
Therefore, not learning (and thus paying not to learn) does not EU -dominate
learning, and so learning is always admissible, for our fully worked out ver-
sion of the NDS rule. The basic idea is that if an act is maximal for some
agent, it cannot be dominated.

28Good’s result also holds in the infinite case. Our result also seems to go through for
the infinite case, but we hesitate to assert that since we have not yet looked carefully at
whether ‘integrals of sets of values’ are well behaved.



For clarity, we will restate this proof sketch now more formally. For any
probability function Pri, each possible evidence Ek ∈ E is associated with
an act with maximum precise expected utility amongst the set of available
acts A. Call this act aik. (Assume, with no loss of generality, that there is
a unique such act with maximum precise expected utility for each Pri and
each Ek.)

There is also an act in A that has maximum expected utility, in the uncon-
ditional sense (before learning), according to Pri. Again, assume, with no
loss of generality, that there is a unique such act, which we label Amaxi

.

We know, by Good’s theorem, that:∑
k

Pri(Ek)× Ui(aik(Ek)) ≥
∑
k

Pri(Ek)× Ui(Amaxi
(Ek))

Here Ui is the utility function that is paired with probability function Pri.

The right-hand term above amounts to the value of not learning for this
probability function Pri in the representor, i.e. EUi(Don’t learn).

The left-most term does not amount to the value of learning with respect to
Pri, however, because we have not taken into account sophisticated choice.
The value of learning for each Pri depends on what would be the sets of ad-
missible acts if each respective Ek was learnt (the Ck(A)). For each Ek, these
choice sets will at least include the union of all the acts that have maximum
expected utility, conditional on Ek, for the probability distributions Pri in
P :

Ck(A) ⊆ a1k ∪ a2k ∪ . . .
⊆

⋃
i

aik

The set of expected utilities that Pri assigns to this choice set under the
assumption that Ek obtains is then

Ui(a1k(Ek)) ∪ Ui(a2k(Ek)) ∪ . . . =
⋃
i

Ui(aik(Ek))

So the value of learning according to the probability function Pri:

EUi(Learn) =
∑
k

Pri(Ek)×
⋃
i

Ui(aik)



As noted in Section 3, we take the above expression to equate to the set of
all combinations of probability weighted sums of utilities, given the utility
sets associated with each Ck(A). Therefore, one of the utility values in the
set EUi(Learn) is

∑
k Pri(Ek)× Ui(aik). That is, the expected utility of

choosing according to the expectations of Pri for each k.

Recall that, by Good’s theorem, this expression is greater than or equal to
the value of not learning, for the probability function in question. Thus,
given our definition of <P , it is NOT the case that

EUi(Learn) <P EUi(Don’t learn)

Therefore, it is not the case that

Learn <EU Don’t learn

That is, learning is always admissible (given a choice of learning and not
learning) by our refined NDS rule.29

4.3 Return to the trilemma

If the only plausible decision rule was the NDS rule, the trilemma stated
in Section 2 would stand. We have seen that this rule sanctions paying to
avoid free evidence, so P3 is true. P1 and P2 are also apparently true, but
the three together yield a contradiction. The positive result proved above,
however, suggests a possible resolution: This is to deny P1 in favour of a
weaker premise, P1′, stating:

P1′ Paying to avoid free evidence, or even avoiding free evidence, should
never be uniquely admissible, when pursuing free evidence is also an
available option.

Note that in the precise case, we can satisfy the stronger principle that learn-
ing free evidence before making a decision has to be at least as good as not
learning. This means the precise agent never pays to avoid free evidence.
The above principle amounts to the weaker claim that learning cannot be
worse. Since the precise Bayesian has complete preferences, these two prin-
ciples amount to the same thing in the precise case. In the imprecise case,
however, they are importantly different. We have seen that the refined NDS
rule satisfies P1′, but the gamma-maximin rule does not.

29One can also infer from the above that for Levi’s rule, too, learning is always admis-
sible. Indeed, not just for one but for all probability functions Pri, the supremum of the
expected utility values for learning is greater than the expected utility for not learning.



5 Broader considerations of dynamic coherence

Could we do better than the NDS rule? Should we be looking for a decision
rule that never even permits paying to avoid free evidence? We think the
answer is no. There’s a sense in which decision rules like NDS30 cannot be
improved on.

If one wants to advocate some form of non-probabilistic epistemology, and if
one wants to link this up with decision theory, then some axiom of the stan-
dard expected utility representation theorems must be denied. The plausible
candidates for denial are the ordering postulate and the independence postu-
late. The NDS rule violates ordering, while the gamma-maximin rule upholds
ordering but violates independence.

Any denial of independence leads to a pragmatic kind of dynamic incoher-
ence: effectively refusing free money. Indeed, the dynamic incoherence can
be seen as a sort of ‘information aversion’ or paying to avoid free evidence
(Seidenfeld 1988; Wakker 1988; Al-Najjar and Weinstein 2009). This is easily
shown via the decision problem in figure 3. Let A,B,C stand for lotteries
and ApC stand for the mixed lottery ‘A if Z, C otherwise’ where Z has
probability p. Let � be Your strict preference – that is, � is asymmetric and
transitive. Independence is the principle that states that A � B if and only
if ApC � BpC for all C. A violation of independence is thus a set of lotter-
ies A,B,C where A � B but it is not the case that ApC � BpC. Assume
a strong violation of independence, i.e. one involving a preference reversal:
BpC � ApC. A sophisticated agent with the above independence-violating
preferences reasons about the decision in figure 3 as follows (Seidenfeld 1988;
Steele 2010): You start by looking at the ‘terminal’ decisions: those decisions
with no further choices following them. In this case, those are the choices
at nodes 1 and 2. In each case, the arrow to the right highlights the hypo-
thetically chosen option. Both these choices can be read off the preferences:
A � B, so A is chosen at node 1, but BpC � ApC, so BpC is chosen at node
2. Now consider the choice from node zero. Since You know that your node 1
choice will be to choose A, the ‘up’ option of node 0 is effectively the gamble
ApC. The ‘down’ option of node 0 is a choice between the two gambles ApC
and BpC. Since You prefer BpC to ApC, you prefer to go down at node 0.
Since the preference is strict, there is some small amount of money, δ, that
You would pay to go down if offered this decision problem. Recall that p is
the probability of event Z. Note that choosing up is effectively choosing to

30We noted in the previous section that our results concerning the NDS rule also apply
to Levi’s e-admissibility rule (cf. Seidenfeld (2004).)
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Figure 3: A decision tree that yields information aversion (after Seidenfeld
(1988))

learn whether Z is true before making Your choice. Since You prefer down to
up, You would pay to avoid learning whether X has occurred. The only thing
needed to get this example going was a strong violation of independence.31

We advocate, instead, dropping the ordering postulate: the induced prefer-
ence can be incomplete. As we have seen, such decision rules also sometimes
suffer from issues with information aversion. However, they merely permit
– never mandate – paying to avoid free evidence. This is an advantage over
independence-violating decision rules. See also Bradley and Steele (2014a)
for further discussion of permissision and obligation in the context of sure
loss and sequential choice.

6 Concluding Remarks

Let us return to the trilemma that we began with:

P1 Paying to avoid free evidence is irrational.

P2 Incomplete preferences are not irrational, and can be represented by
sets of probabilities and utilities. In other words, imprecise probabilism
is permissible.

P3 All plausible decision theories for handling imprecision sanction paying
to avoid free evidence.

Of course, one could always deny P2, and claim that imprecise probabilism
is evidently irrational. But we think there are compelling reasons for beliefs

31Epstein and Le Breton (1993)’s theorem also dashes hopes for theories that violate
Independence but retain Ordering. The theorem effectively shows that the imprecise
probabilist cannot keep Ordering and also avoid information aversion.



being imprecise, and so we consider this ‘way out’ to be a last resort (but
see Al-Najjar and Weinstein (2009) for a different opinion).

Alternatively, one could deny that ‘free evidence’ has any natural meaning.
This could be reasonable: ‘free’ only makes sense with respect to some notion
of value, and notions of value seem intimately tied to theories of decision.
One might say that evidence is free by the lights of some decision theory
just in case You would not pay to avoid this evidence if You were abiding
by the theory. In terms of our trilemma, this move denies P3—that decision
theories for handling imprecision allow paying to avoid free evidence—by
claiming that the evidence is not free, by definition. Of course, the spin-off
of this move is that P1 is rendered vacuous. A resolution of this sort might
be appealing to those who already regard free evidence a merely technical
term in the precise context.

We do not consider this a reasonable response, since Good’s definition of free
evidence seems intuitive, and applicable to a wide class of decision theories.
Recall that evidence is free by the standards of Good’s proof if learning
this evidence does not otherwise change Your decision problem. That is,
You update Your beliefs according to conditionalisation, but the available
options A1, . . . , As, and the utilities of the outcomes associated with these
options remain the same, whatever evidence is learnt.32

One might object to P1 on the grounds that there are cases of intuitively
free evidence that You might reasonably want to avoid. For instance, imagine
You are trying to decide between reading Murder on the Orient Express and
going for walk, and then someone offers to tell You who killed Mr. Ratchett
before You make the decision. Common sense tells us that it may be disad-
vantageous for You to accept this evidence, even if it comes with no explicit
charge, which seems strangely at odds with Good’s theorem.

Closer inspection of the above case reveals that the evidence, while not incur-
ring a monetary or other material cost, is not free in the Good sense because
it may change the outcomes of the reading option: reading the novel when
You know who did it is not the same act as reading the novel when You are
one step behind Poirot and his little grey cells. That is to say that there is
intrinsic value to Your current state of ignorance with respect to the identity
of the murderer: you enjoy your reading of the novel more while not knowing
who did it. Kadane, Schervish, and Seidenfeld (2008) discuss a similar case

32Of course, in many cases it is beneficial for the precise probabilist to pursue costly
evidence; it depends on the details of the case at hand. Good’s proof is interesting,
however, because it establishes the general claim: that it is never a bad thing to pursue
free evidence.



(Example 12). States of belief having intrinsic value offer well-known excep-
tions to various Bayesian theorems, for example Dutch book arguments for
additivity or conditionalisation.

What we have done in this paper is examine premises P1 and P3, with
their meanings taken at face value. We have shown that something stronger
than P3 in fact holds – it is not just the ‘extant’ decision theories that
permit paying to avoid evidence, but in fact any plausible decision theory
for handling imprecision permits paying to avoid free evidence in some cases.
On the positive side, however, we have refined the consequence of ‘paying
to avoid evidence’. Certain decision theories – those akin to the NDS rule33

– do indeed permit paying to avoid free evidence in ‘problem cases’ that
apparently all involve dilation, but these theories never have avoiding free
evidence as the uniquely admissible option when learning is available.

So, if we are willing to revise premise P1 in favour of P1′, then there is no
longer a contradiction. Note that P3 can also be revised to P3′ so that it is
more informative:

P1′ Paying to avoid free evidence, or even avoiding free evidence, should
never be uniquely admissible, when pursuing free evidence is also an
available option.

P2 Incomplete preferences are not irrational, and can be represented by
sets of probabilities and utilities. In other words, imprecise probabilism
is permissible.

P3′ For a certain class of decision rules akin to the Sen-Walley Maximality
rule, learning free evidence is always admissible, but paying to avoid
free evidence may sometimes be admissible too. There are no plausible
decision rules that fare better than this, in the sense of never permitting
paying to avoid free evidence.

This is, in our opinion, the best weakening or ‘way out’ of the original
trilemma. It gives us the conclusion that the NDS rule is as good as it
gets for the imprecise probabilist when it comes to negotiating free evidence.

33The NDS rule is the most ‘permissive’ decision rule, but we have noted that rules at
least as permissive as Levi’s e-admissibility rule behave similarly to NDS with respect to
free evidence.
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