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Abstract 
There are now a plethora of data, models and approaches available to produce regional and 
local climate information intended to inform adaptation to a changing climate. There is, 
however, no framework to assess the quality of these data, models and approaches that takes 
into account the issues that arise when this information is produced. An evaluation of the 
quality of regional climate information is a fundamental requirement for its appropriate 
application in societal decision-making. An analytical framework for “science-based 
statements and estimates about future climate” that allows for an assessment of their quality 
is constructed. This framework targets statements that project local and regional climate at 
decadal and longer time scales. After identifying the main issues with evaluating and 
presenting regional climate information, it is argued that it is helpful to consider the quality of 
statements about future climate in terms of (1) the type of evidence and (2) the relationship 
between the evidence and the statement. This distinction not only provides a more targeted 
framework for quality, but also shows how certain evidential standards can change as a 
function of the purpose of a statement. The key dimensions to assess regional climate 
information quality are: diversity, completeness, theory, adequacy for purpose, and 
transparency. This framework is exemplified using two research papers that provide regional 
climate information and the implications of the framework are explored.  
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1. Introduction 
 
Informing the large number of actions needed to manage climate risks, reduce damages, and 
maximise potential opportunities is a grand challenge for climate change science (Moss et al. 
2013). Adapting human and natural systems across sectors of society is necessary to improve 
preparedness and enhance resilience to a changing climate. Decision-relevant climate 
information can support society’s efforts to adapt to climate change.  
 
Different strategies for making climate adaptation decisions utilise scientific information 
differently in the decision-making process (Dessai and van der Sluijs 2007). Nevertheless, 
whenever scientific climate information is used in adaptation, “quality” is considered to be an 
essential characteristic that this information should have (e.g. Lu 2011, Wilby et al. 2009, for 
a general overview on quality of science for policy, see Funtowicz and Ravetz 1990).  
 
The kind of long term regional climate information that is increasingly important for decision 
makers (see, e.g., Knutti 2019) ranges in temporal scales - from hours to multiple decades – 
and spatial scales – from meters to hundreds of kilometers. Global Climate / Earth System 
Models (GCMs and ESMs) are the dominant source of regional climate information, but 
increasingly downscaling, both statistical and dynamical, has been used to achieve higher 
resolution information (see, e.g., Pielke and Wilby 2012, Giorgi 2020). However, it is 
difficult to evaluate long term information at the regional scale because of the presence of 
deep uncertainty and because the usual empirical tests are not applicable due to the non-
stationarity of the climate system (e.g. see Stainforth et al. 2007b). 
 
General guidance on the dimensions of quality (e.g. Nissan et al. 2019, Benestad et al. 2017) 
are emerging in the literature, but this literature is fragmented. The way quality is 
characterized can be very different depending on whether it is discussed in physical climate 
science (e.g. Zeng et al. 2019; Krysanova et al. 2018), environmental social science (e.g. 
Lemos and Moorhouse 2005; Cash et al. 2003) or philosophy of science (e.g. Parker and 
Risbey 2015, Parker 2009), and on whether it is aimed at knowledge deriving from climate 
science research or information deriving from climate services (Barsugli et al. 2013). 
Characterization of the quality of climate information should also include a discussion of the 
roles of scientific knowledge in their social, political and economic contexts (Maxim and van 
der Sluijs 2011).  
 
In order to address the quality issues that are specific to climate change adaptation decision 
making, we focus on what quality means for regional climate information derived from 
knowledge produced by scientific research. In particular, we target the quality of the evidence 
and the methods used to produce knowledge about regional climate change and its related 
uncertainty. Due to the knowledge evaluation issues discussed below, this knowledge cannot 
only be derived from the output of Earth System Models: other lines of evidence, such as 
expert judgment, theory and observations can and should be taken into account to produce 
information that goes beyond or replaces model output (see Fig. 1). In the rest of this paper, 
regional climate information refers to scientific knowledge about regional climate that 
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intends to inform adaptation to a changing climate. We recognize that social values do 
influence methodological choices in the sciences (see e.g. Douglas 2009, Intemann 2015, 
Elliott and Steel 2017), but we do not directly engage with this debate here. 
 
The aim of this paper is to propose a framework that enables the assessment of the quality of 
regional climate information. The framework draws on insights from physical climate 
science, environmental social science and philosophy of science to identify relevant quality 
dimensions and is intended as a general guide to assess quality in this context. We 
characterize quality along five dimensions that can support users of climate information, 
including “non-specialist scientists” and decision-makers. Scientists might use this 
framework because knowledge about future regional climate is produced by experts across 
many different disciplines, and an expert in one discipline may not have the expertise to 
evaluate the knowledge produced from another discipline. Decision-makers can use this 
framework because they may not be trained in the science that is used to generate regional 
climate information. The framework raises the questions that specialists and non-specialists 
alike need to ask regarding the provenance of the information they provide and use. 
 
We start this paper by further clarifying what is meant by regional climate information (Sect. 
2.1). Next, we highlight the main issues that arise in evaluating and representing this 
information: knowledge evaluation issues (Sect. 2.2) and quantification issues (Sect. 2.3). 
These issues are to be understood in the context of the purpose of regional climate 
information discussed in Section 2.1. Next, we characterize how regional climate information 
is constructed (Sect. 3) and we propose a framework to evaluate its quality (Sect. 4). The 
framework identifies five key dimensions of quality: diversity, completeness, theory, 
adequacy for purpose, and transparency and we illustrate the application of these dimensions 
with two examples. We conclude with some general remarks about the framework (Sect. 5). 
 
2. Why we need a quality assessment framework 
 
Climate science serves many different purposes, ranging from improving our understanding 
of earth-system processes and their interaction with human activity, to informing decision 
making. We focus on regional climate information that has the purpose of informing climate 
change adaptation decisions. Regional climate information is to be understood as statements 
or estimates about future regional climate that have the intention of informing adaptation to 
a changing climate. We highlight the purpose of regional climate information because 
different purposes for generating information motivate the use of different methods of 
generating this information (Laudan 1984, pp.62-63, Shackley and Wynne 1995), and 
different standards of evaluation. However, there is currently no quality framework that 
explicitly claims that quality can change depending on the purpose that the information 
serves. In this section we clarify the purpose of the regional climate knowledge addressed by 
our framework and specify some of the main challenges that can affect quality in this context. 
 
2.1 The purpose and epistemic reliability of regional climate information 
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The issue of model purpose has been addressed by researchers interested in how to justify 
model-based inferences that are relevant for policy. Recently, Thompson and Smith (2019) 
have highlighted the distinction between “model land”, the land of statements about models 
derived from models, and statements derived from models about the real world. They argue 
that when making decision relevant model-based statements, scientists need to be aware of 
and explicit about the consequences of the assumptions introduced in a model, since decision-
relevant statements will be taken to be about the real world, rather than the model. Risbey et 
al. (2005), Parker (2009, 2020), Baumberger et al. (2017), and Nissan et al. (2020) argue that 
when we assess a model, we are not assessing the whole model, but only the aspect of the 
model that addresses the particular question asked of the model, or, in other words, the 
purpose that the model serves. So, how does the purpose of informing climate change 
adaptation feature in this quality assessment framework? 
 
If the purpose of regional climate information is to inform adaptation to a changing climate 
then it should be epistemically reliable. Epistemic reliability of a statement or an estimate, in 
this context, refers to whether the statement or estimate (and its associated 
confidence/uncertainty) about the future is likely to capture or estimate a state of the climate 
that will actually realise. The epistemic reliability of regional climate information is difficult 
to assess due to the non-stationarity of the climate system and the timescales of change under 
consideration which remove the option of applying the usual empirical tests to these 
statements/estimates. Epistemic reliability of multi-decadal projections is different from the 
meaning of reliability as it is used by the weather and seasonal forecasting community (e.g. 
Weisheimer and Palmer 2014), which relies on past model performance in forecasting the 
system. Winsberg (2006, p. 17) suggests that in some cases one can define a reliable process 
in terms of how well it fits with the methods, physical intuition, and data of a given field, 
rather than in terms of the relative frequency with which a model produces an accurate 
statement. Baldissera Pacchetti (2020), however, adds that when assessing uncertainty from 
the structural differences between climate models it is important to be able to explain why we 
might believe that such climate knowledge is epistemically reliable.  
 
Providing these explanations is especially important when an evaluation of the accuracy of 
model output cannot be established over a time frame of meaning to the assessment. We 
know whether a weather forecasts is reliable when there are collections of past forecasts and 
out-of-sample verifications thereof. This is the sense in which reliability is understood in the 
weather and seasonal forecasting community. But out-of-sample verifications are not always 
available. Consider the following: we know that a damped harmonic oscillator provides 
reliable predictions of the behavior of an oscillating weight in a viscous medium if the 
oscillation is slow enough–and we know this because it is derived by means of Hooke’s law, 
Newton’s second law, etc. This theoretical knowledge, together with some empirical results 
about viscosity, will allow one to have an epistemically reliable expectation of how a weight 
will behave in a new medium for which one knows the viscosity but for which there are no 
experimental results of weights oscillating in that medium. While the case of generating 
regional climate information is considerably more complex, explanations of a similar nature 
can help us assess to what extent regional climate information captures the potential future 
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state of affairs, in a way that can inform climate change adaptation decisions.  When the 
purpose of regional climate information is to inform adaptation to a changing climate, it 
should be epistemically reliable in the sense that one should be able to explain why a 
statement about future regional climate is likely to happen, or, in other words, why it is 
credible.  
 
Epistemic reliability of regional climate information is particularly important when 
consequential decisions are made on the basis of this information. This concept is therefore 
central to our quality evaluation framework: the higher the quality of a statement or estimate 
about future climate, the more reasonable it is to believe that we are making a credible 
statement or estimate for its societal purpose. This is how “quality” is most usefully 
interpreted in the context of regional climate information for adaptation planning. In order to 
be clear how knowledge about future regional climate should be evaluated, we first review 
some of the major shortcomings of current climate knowledge evaluations and of how current 
knowledge about regional climate is presented.  
 
 
2.2 Knowledge evaluation issues 
 
While it is recognized that uncertainty in climate projections is in some sense irreducible 
(see, e.g., McWilliams 2007), gaps in our knowledge about future regional climate can also 
be due to theoretical, observational and computational constraints. For example, there are 
limitations to the empirical tests of the climate models from which this knowledge is derived. 
Truly forward looking tests about the accuracy of climate projections can only be made with 
earlier generations of models and even then the available observations are limited to those 
between the date the projection was produced and the present day; a short period in the 
context of climate change and climate variability (see, e.g., Dessai and Hulme 2008, Grose et 
al. 2017, Housfather et al. 2020 for exceptions).  
 
Climate models are also evaluated based on how they simulate past observational or 
reanalysis data. But shared assumptions in Global Climate / Earth System Models (GCMs 
and ESMs) and reanalysis data generated with such models open the possibility of shared 
biases that are difficult to detect and isolate. Lenhard and Winsberg (2010, p. 257) have 
argued that GCMs are subject to a kind of “confirmation holism”: the complexity of both the 
interactions between the modules of the GCM and the model development process, often 
makes it virtually impossible to assign improvements in model performance to improvements 
of the representation of the physical processes in the code. Further, assessments of model 
performance with observational and reanalysis data do not directly test the prognostic 
accuracy of the model, as successful reproduction of past data does not imply that models 
will accurately predict a changing climate on long temporal scales (e.g., Reifen and Toumi 
2009). Climate projections are extrapolatory (see e.g. Stainforth et al. 2007b), because the 
conditions to which the model is applied are different to those for which we have 
observations, making past successes less relevant. Last but not least, the nature of this kind of 
evaluation runs the risk of evaluating the models against features of datasets which have been 
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knowingly or unknowingly used in model development or tuning (see Shackley et al. 1998 
for an early analysis of the use of GCMs for policy making).  
 
Model evaluation is often sought in a context of demonstrating a degree of robustness. One 
common understanding of robustness is the one used when performing sensitivity analysis, 
which philosophers have called “inferential robustness” (Woodward 2006).  Inferential 
robustness refers to a robust inferential process. Its core idea is that the statement is robust if 
it is insensitive to various competing assumptions, models, or, for the case of regression 
analysis, choice of competing explanatory variables. Following Woodward (2006), suppose 
that Ei are the different assumptions, models, etc., and R is the statement derived from the 
inferential process. Then, if the same statement R is obtained for any choice of Ei, then R is 
robust, and likely to be true. This reasoning underlies some of the interpretations of multi-
model ensembles, and has been criticized on the basis that model genealogy, shared 
assumptions between GCMs, and the use of GCMs in producing reanalysis data, undermine 
the strength of this inference and the associated uncertainty (Parker 2011, but see Lloyd 2015 
for an alternative interpretation of robustness and ensembles). Woodward notes that this 
notion of robustness relies on the assumption that all possible competing assumptions, 
models or explanatory variables are considered.  
 
Another relevant notion of robustness is what Woodward (2006) calls “measurement 
robustness” (also discussed in Wimsatt 1981), which refers to the confidence one has in an 
empirical value that is measured with different instruments. So, for example, a measurement 
of temperature at location x and time t is robust if one gets the same value with a mercury 
thermometer, a thermocouple or an infrared thermometer. While this notion of robustness has 
not been formalized, philosophers have argued that the independence of these measurements 
is what is valuable for inferring that the reading is correct (Woodward, 2006, p. 234). The 
reasoning behind this argument is similar to the reasoning behind the importance of 
independence in statistical sampling, i.e. it is valuable because it removes possible biases.  
 
Independence is a term discussed in physical climate science in the context of multi-model 
ensembles (MME) (see Knutti et al. 2017 and references therein) and in the philosophy of 
science (Parker 2011; Lloyd 2009, 2010, 2015). This is particularly problematic for MMEs, 
where models are often analysed as if they were independent (Pirtle et al. 2010; see also 
Parker 2011) but such an assumption is not warranted (Parker 2011, Knutti et al. 2010, 
Masson and Knutti 2011).  
 
Physical climate scientists are developing strategies to approximate independence in MMEs 
by designing schemes to weight the models (Sanderson et al., 2015, Knutti et al., 2017) but 
there are still open questions about whether this strategy is effective. The main point of 
Parker (2011) is that we cannot think of an ensemble of models to be a random sample from 
the space of possible models but since it is unclear how to define a space of all possible 
models, model weighing is inherently problematic. Most recently, Jebeile and Crucifix (2020) 
have discussed the difficulties of MME optimization. 
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The complexity of GCMs and the difficulties of model evaluation implies that regional 
climate knowledge needs to rely on more than just the models (or ensemble of models) to be 
able to evaluate its epistemic reliability and hence its quality. Further, the above limitations 
should always be clearly stated when producing decision relevant climate knowledge based 
on GCMs. 
 
2.3 Quantification issues 
 
The issues outlined above can be exacerbated by an excessive focus on quantification. Policy 
makers want, or are thought to want, quantified climate information (Heaphy, 2015) but 
scholars interested in the science-policy interface have increasingly called attention to the 
pitfalls of such a focus and the overconfidence that it produces (Porter 1995, Supiot 2017, 
Kovacic 2018).  
 
Adopting a “one size fits all” approach for quantifying knowledge and uncertainty can lead to 
several issues. Parker and Risbey (2015) argue that this kind of approach can lead to a false 
sense of precision regarding the uncertainty associated with a particular distribution of future 
states of the climate. Such false precision, they continue, may influence the choice of 
decision making strategy adopted by the policy maker (e.g. a top down instead of a bottom up 
approach, see Dessai and van der Sluijs 2007).  
 
The focus on quantified information may also suggest that such information is somehow 
better than other ways of representing knowledge claims and associated uncertainties (e.g. 
ranges with low precision, or direction of change), but this is not the case. See, for example, 
the discussion of quantified information provided by the IPCC found in Risbey and Kandlikar 
(2007). In that paper, the authors argue that the distinction made by the IPCC between 
likelihood and confidence (Mastrandrea et al. 2011) is not a useful one, because likelihood 
and confidence are supposed to separate the frequentist and subjective interpretations of 
quantified model output, but these cannot be clearly separated (Risbey and Kandlikar 2007, p. 
24). Relatedly, philosophers have argued that even in a Bayesian framework, societal and 
ethical values can influence the evaluation of probabilistic model output (Parker and 
Winsberg 2018). So, quantification may lead to a false perception of lack of subjectivity. 
 
In sum, the current focus on GCM/ESM evaluation and output quantification is not generally 
adequate to achieve the kind of epistemic reliability that is required for informing decision 
making. In the rest of this paper, we focus on how regional climate information that intends 
to inform decision making is constructed and indicate the quality dimensions that directly 
address the issues that have been presented so far.  
 
3. Towards a quality assessment framework 
 
We can now ask how to approach quality assessment for regional climate information that 
intends to inform decision making. Decision makers may want to know how likely it is that a 
particular statement about future climate will realize, so the epistemic reliability of a 
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statement is an important component of statements that aim to inform decision making. The 
relation between epistemic reliability and how these statements or estimates are presented, 
e.g. how precise a particular statement is and what form it takes (probability distribution or 
qualitative estimate), depend on how the information is produced. 
 
Risbey and Kandlikar (2007) suggest that scientists should formulate statements with 
different levels of precision based on the available evidence and the strength of the 
justifications for the statements. Precision, in this case, refers to whether the information 
appears in the form of a probability distribution function, bounds on estimates, and so on. The 
quality of an estimate depends on the quality of the evidence in the sense that we can make 
better estimates with better evidence. But we can choose what precision to report and that 
choice also depends on the quality of the evidence and on how the accuracy is assessed.   
 
The relation between quality of model output and quality of evidence is most clear in short 
term forecasting (e.g. weather forecasting): in this case, instances of past successes of the 
models, and well-established methodological choices provide support for the accuracy of 
future probabilistic forecasts and, as a consequence, their quality. It should be noted however, 
that probabilistic weather forecasting may incur similar problems as climate models when 
evaluating forecasts of extreme events for which there are few examples in the observations.  
 
For the case of regional climate information however, instances of past success of a model do 
not directly imply that the model will be accurate in the future, since the conditions to which 
the model is applied are different (see section 2). We therefore fine-grain the analysis of the 
relation between evidence and scientific statements to better articulate how quality can be 
evaluated for regional climate information. We consider two aspects of this information 
relevant for quality: 
 
(1)  the evidence which underlies this information (e.g. observational or model time-series 
data, proxy data, expert judgment, theoretical understanding, etc.), and  
 
(2)  the relationship between the evidence and the information (e.g. validity of the 
methodological details regarding how the information is extracted from the evidence, or how 
different lines of evidence are aggregated, etc.). 

 
Considering this distinction is helpful for evaluating the quality of statements or estimates 
about future regional climate, in so far as it allows for a systematic representation of the way 
this information is produced. We exemplify the utility of this distinction in Table 1, where we 
introduce two papers that we will use to illustrate the quality dimensions discussed in the next 
section: Risbey et al. (2002) (R02 hereafter) and Tebaldi et al. (2004) (T04 hereafter). Both 
papers produce scientific regional climate information that intends to inform adaptation. Both 
papers target changes in precipitation under climate change but they present the information 
in qualitative and quantitative terms respectively. 
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Table 1 shows R02’s qualitative statement about future regional climate, the evidence used 
and how the evidence is aggregated to produce the statement. Table 1 also shows T04’s 
statement, and their use of a Bayesian method to estimate probability distributions of present 
and future precipitation using observations and model output. Their conclusion is similar to 
R02 in that there is large inter-regional variability, but they claim more precision about what 
areas are affected, in what way, and provide quantified estimates.  
 
4. The quality assessment framework 
 
Our framework utilises five dimensions that are indicative of the quality of statements about 
future climate that are relevant for adaptation. These are diversity, completeness, adequacy 
for purpose, theory and transparency. This section describes these dimensions and how they 
apply to our framework. The dimensions embody an in practice unattainable standard for 
quality but should nevertheless be used as a standard toward which regional climate 
information should strive. 
 
Diversity. This dimension of quality indicates that different types of evidence should be taken 
into account when producing knowledge about future regional climate of high quality. It is 
motivated by the knowledge evaluation issues of section 2.2 and the importance of variety-of-
evidence discussed by Vezer (2016) (see also Lloyd 2009).  Recall the discussion of 
robustness in that section: it is clear that MME are not robust in the senses that have been 
spelled out by the philosophers discussed in section 2.2, and hence evaluation of regional 
climate information in terms of MME is insufficient for high quality. Recent discussions in 
the philosophy of climate science (e.g. Winsberg 2018, Lloyd 2015) suggest the focus of 
robustness should be not only the independence of the lines of evidence but also the types of 
evidence. In Figure 1, we show a possible typology of evidence that can contribute to climate 
knowledge, such as theoretical understanding, model output, paleoclimate data, etc. Note that 
this typology may not be exhaustive and does not have strict boundaries. For example, 
reanalysis data is a hybrid between model output and observations, and shares characteristics 
with both types of evidence.  
 
Incorporating different types of evidence is important to address some of the issues around 
shared biases between climate models–and, to a lesser extent, with reanalysis data. Doing so 
somewhat approximates independent lines of evidence and the features of measurement 
robustness that have been discussed by philosophers such as Woodward (2006) and Wimsatt 
(1981).  Diversity of evidence is mostly a dimension that applies to the evidence that 
underlies regional climate information, but it can also inform the relation between the 
evidence and the information. While it would be most convenient if diverse sources of 
evidence supported the same narrow range of values, they are still useful even when that is 
not the case. Having different sources of evidence that disagree is still better than relying on 
just one of them, since this allows the scientist to have an appropriate level of uncertainty. 
 
To further illustrate this dimension of quality, consider the two example papers of Table 1. 
R02 mainly use three different types of evidence. The first is “dynamical thinking”, which is 
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an expert evaluation of possible future climate based on theoretical insights. This type of 
evidence combines “expert judgment” and “theory” (see Fig. 1). The second type of evidence 
is climate model output. Dynamical thinking and climate model output are then supplemented 
by a third type of evidence, reanalysis data, which it is used to illustrate large scale synoptic 
features identified by the experts. T04 rely on model output and observational data. 
 
To evaluate diversity, we need to ask about the relation between these types of evidence. It is 
clearly stated in R02 that dynamical thinking is used to interpret model output, but the 
possible shared assumptions between model output, reanalysis data and dynamical thinking 
are not specified (e.g., are the experts the same individuals that have built the models the 
output of which is used?). On the other hand, the observational data used by T04 shares fewer 
assumptions with model output data. So, while T04 use fewer types of evidence, the types of 
evidence used are more diverse than in R02. However, the lack of detailed information about 
the relation between sources of evidence in both R02 and T04 makes this a difficult 
dimension to assess. 
 
Completeness. Completeness refers to how many of the potential sources of evidence are 
taken into consideration. This characterization of completeness draws from the discussion of 
completeness of uncertainty assessments found in Parker and Risbey (2015). Completeness is 
also discussed as a necessary assumption in the context of robust inferential processes, and 
Woodward (2006) criticizes it in so far as it is an unattainable standard for robustness. 
Nevertheless, good statements about future climate draw from all possible and relevant 
sources of evidence (all the elements that contribute to climate knowledge in Fig. 1), and 
completeness is a dimension that, together with diversity, captures the value of maximizing 
the different types of evidence for improving the quality of regional climate information. 
Because of the structural similarities and shared assumptions of climate models, using all 
possible models in an MME would not count as complete for the purposes of delivering 
information for adaptation.  
 
Some reasons for which technically sophisticated model intercomparison projects may be 
insufficient are the following. First, as discussed in section 2.2, model ensembles do not 
suffice to produce a probabilistic projection which reflects our uncertainty: models cannot be 
considered to be elements from a random sample of all possible models (Parker 2010, 2011). 
Relatedly, the hawkmoth effect (Frigg et al. 2014) implies that small differences in (non-
linear) model structure can lead to diverging differences in model output. Even with model 
weighting, therefore, multi-model ensembles may still produce a biased representation of the 
uncertainties in model-based projections. Second, Deser et al. (2012) have shown that 
different (micro) initial-condition (Stainforth et al. 2007a) ensemble sizes are needed 
depending on the variable of interest (such as sea level pressure, precipitation, or surface air 
temperature), and computational constraints limit the ensemble size to below what is required 
for many variables. Third, Hawkins et al. (2016) have shown that details of the distributions 
of the model output from the model ensembles strongly depends on the (macro) initial 
conditions (Stainforth et al. 2007a) used for these experiments. We therefore suggest that 
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regional climate information needs additional lines of evidence for satisfying the dimension 
of completeness. 
 
Take the R02 and T04 cases above. R02 mainly take three possible types of evidence into 
consideration: “dynamical thinking”, climate model output and reanalysis data. T04, on the 
other hand, explicitly state that they want a non-heuristic approach to produce a weighted 
average of model output. This suggests that they purposefully leave out evidence that cannot 
be formalized (e.g. “dynamical thinking”). So, only two types of evidence (models, 
observations) are used. T04 would therefore have lower completeness than R02. 
 
Completeness should, of course, be evaluated in conjunction with diversity. The number of 
different types of evidence (aspect 1 in Section 3.2) needed to satisfy the completeness 
dimension may depend on the relation between the evidence and the statement (aspect 2 in 
Section 3.2). In R02, the expert reasoning used to augment and interpret climate model 
information provides a more complete assessment of the uncertainty in the statements about 
future climate than the model-based information alone. Dynamical reasoning is, in this case, 
used as a tool for evaluating model deficiencies and interpreting model output. Furthermore, 
the authors recognize that model output and dynamical reasoning could be compared with 
observations to improve the credibility of their statements still further. But in T04 the two 
types of evidence (model output and observations) are less “complete” than they appear, as a 
consequence of how they are combined to inform the statements.  In the quantification of 
uncertainty in model-based projections the choice of observational dataset can itself be a 
source of bias (Singh and AchutaRao 2020). These methodological choices affect T04’s 
results because their model performance measures (see Table 1) are based on model 
performance against past observations.  
 
Theory. Theory refers to the theoretical underpinning of statements about future climate, 
along with the representation of the underlying theory. Climate models are sometimes 
thought of as theoretical tools (e.g. see Lloyd 2015) but the complexity of climate models 
implies that it is difficult to explain epistemic reliability without explicitly resorting to the 
theoretical understanding behind the interpretation of model output (Lenhard and Winsberg, 
2010). So the strength of the theoretical underpinning is an important source for the quality of 
these statements. Ebi (2011), for example, argues for the importance of distinguishing 
theoretical support from other sources of evidence, as theoretical support can provide useful 
information to policy makers about the state of scientific understanding behind particular 
statements. For example, theoretical understanding may point to processes that are considered 
important for producing an estimate about future regional climate but are not adequately 
represented or assessed in models. Bony et al. (2011) and Giorgi (2020) make a similar 
argument and highlight the importance of “understanding” when no direct observations are 
available. In other situations, outside the domain of climate change, strong theoretical support 
is not always necessary of course. However, theory becomes increasingly important when 
other sources of evidence (like repeatable experiments or the appropriate data to test models) 
are not available. This is the case for climate information for adaptation, where estimates 
about never before observed states of the climate are needed (Stainforth et al. 2007b).  
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An example of the theoretical underpinning of statements about future climate is the 
understanding of the processes that are responsible for generating a particular weather 
pattern. How this is taken into consideration as evidence in regional climate knowledge is 
best exemplified by the way R02 uses “dynamical thinking” as theoretical support for 
evaluating model output. When understood as such, theory is a quality dimension that applies 
to the evidence that is used for statements about future climate (aspect 1).  
 
T04, on the other hand, do not include any discussion of the physical theory underlying their 
analysis. Indeed, the multiscale nature of the mechanisms responsible for precipitation are not 
very well understood and not yet modelled successfully (see e.g. Risbey and O’Kane 2011, 
Deser et al. 2012). So, while we understand that models are based on theory, the absence of a 
discussion of how the lack of such theoretical understanding may influence future regional 
precipitation estimates implies that theory is a quality dimension that ranks lower in T04 than 
in R02. 
  
Adequacy for purpose. Adequacy for purpose refers to the empirical adequacy that is 
required of a statement about future regional climate that intends to inform decision making. 
This dimension is similar to empirical adequacy more broadly but puts an emphasis on the 
fact that the level of empirical adequacy that is required for a statement depends on the 
purpose of the statement. For example, Risbey and Stone (1996) investigate whether GCMs 
are adequate for regional climate change assessments by analyzing how GCMs reproduce 
those large-scale atmospheric phenomena that are relevant for regional climate. Adequacy for 
purpose usually refers to how adequate the evidence is for the statement (aspect 2). This 
characterization draws from insights from Risbey et al. (2005), Parker (2009, 2020), 
Baumberger et al. (2017), and Nissan et al. (2020), discussed in Section 2.1. So, if one wants 
to assess the empirical adequacy of a model for predicting precipitation, one cannot just 
evaluate the model's performance on the basis of its empirical adequacy about temperature. 
Rather, one needs to be explicit about how the empirical evaluation contributes to the 
epistemic reliability of the information. 
 
Different variables used to inform adaptation (e.g. temperature, precipitation) may have 
different levels of empirical adequacy, depending on the availability and consistency of past 
data, for example. We can ask whether data is fine grained enough, whether the data has 
gaps, and whether model output is produced and analysed at the scales that are needed for 
answering a particular question. In many cases, however, the data that is needed to evaluate 
the models is not accessible: long term simulations of climate variables (especially at the 
local scale) may not suffice to test adequacy because the climate system is not a stationary 
system, and variability may change in unexpected ways (Smith 2002). Because of these 
limitations, adequacy for purpose as assessed by empirical tests is an important but not 
conclusive dimension to evaluate the quality of information (Oreskes 1998, Oreskes and 
Belitz 2001).  
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Consider again the statements about future regional climate change in T04 and R02. To 
evaluate adequacy for purpose, we need to ask: Is the evidence adequate for making a 
statement about future climate that can inform adaptation? R02 clearly state that “one could 
devise a set of diagnostics to discern whether the climate of a particular region was tending 
more towards one scenario or another” (p.1048), which suggests that there is more empirical 
evidence that should be taken into account to have a better statement about future climate. 
The evidence in this case is therefore not as adequate for purpose as it could be. T04 is more 
difficult to assess. Their methodology relies on another paper by the same authors (Tebaldi et 
al. 2005), which is not aimed at informing adaptation but at exploring a particular 
methodology. The intention of T04, by contrast, is to derive probability distribution functions 
for precipitation to make statements about actual future climate. However, as discussed 
above, precipitation is difficult to predict and T04 do not discuss the theoretical, 
computational and observational constraints to projecting precipitation patterns. So T04 does 
not address the adequacy for purpose of the information that they produce and ranks low on 
this dimension. 
 
Transparency. Transparency requires that all the components of statements about future 
climate are accessible and traceable: a user of climate information should be able to identify 
the sources of evidence (aspect 1) and the methods used to derive the statements (aspect 2). 
This dimension is necessary for the evaluation of the dimensions described above, and for 
clearly defining the applicability of the approach, since there are different requirements for 
the quality of the evidence and methods depending on the purpose of the information. 
Transparency is also valuable because it allows for accountability and explicit 
communication of scientific and social values in the scientific process. These elements 
become particularly problematic in collaborative research (Winsberg et al. 2014), and hence 
need to be taken into consideration. 
 
There are different ways in which transparency can be met. First of all, the data and the 
methods should be available. Both R02 and T04 clearly discuss their methods and their data 
sources. However, observational data used in T04 is not directly cited in the paper, and the 
consequences of only using formal methods and one particular dataset to quantify the 
uncertainty tied to estimates about future climate are not discussed explicitly. Explicitly 
discussing the limitations of using particular methods or data sets is important as these 
limitations may not be obvious to all possible users, since not all users share the scientists’ 
expertise. There are different ways to facilitate access to this information in a way that 
promotes transparency and governments and other organizations are working on methods to 
achieve this.  
 
How to best achieve transparency is still being researched (see, for example, Weil et al. 
(2013) for an argument in favour and John (2018) for an argument against transparency in 
science communication). One suggestion is to use progressive disclosure of information, 
where information gets tailored to the expertise and needs of the target audience (van Bree 
and van der Sluijs 2014). A type of information disclosure, called “nontechnical summaries”, 
can make assumptions and limitations explicit for non-expert users. However, these 
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summaries can only reveal relevant assumptions and limitations in so far as they are mediated 
by particular groups of experts and typically experts are only aware of a small subset of the 
assumptions they are making. Note that these kinds of disclosures are not just important in 
the context of communicating information to users, but also for collaborative scientific 
projects that involve experts from different disciplines. Another suggestion includes the 
“traceable accounts” approach of the Fourth US National Climate Assessment (USGCRP 
2018, see Chapter 2), which is an explicit attempt at communicating the evidence and 
methodology that went into each key statement of the report.  
 
5. Concluding remarks 
 
In this paper, we have described issues associated with regional climate information and 
clarified that by this information we intend scientific statements about future regional climate 
that have the purpose of informing adaptation to a changing climate. We further described 
how this information is structured, and, finally, provided a framework for assessing the 
epistemic quality of climate information for adaptation. The current focus on regional climate 
information makes the need for a framework for epistemic quality clear: the perceived 
demand for precise quantification, the limits to evaluating statements about future climate, 
and the fast growth of sources of climate information for adaptation can pose serious 
challenges for the decision maker. Our approach to attenuating these challenges has been to 
clarify the purpose and construction of climate information for adaptation (sections 2 and 3) 
and to identify a set of quality dimensions motivated by the literature in physical climate 
science, environmental social science and philosophy of science (section 4).  
 
We note, however, that the framework outlined above does not provide a list of necessary and 
sufficient conditions for quality. Rather, the dimensions we have selected are a set of quality 
dimensions. These dimensions may not be comprehensive: special situations in which more 
indicators are needed, or some indicators become redundant can arise. For example, there are 
cases in which theory is so well established and well developed, that other indicators (such as 
completeness and diversity) become irrelevant. The overwhelming theoretical support for the 
relation between greenhouse gas concentrations and global average temperature is one such 
example. Of course, the theoretical support for the causal connection between greenhouse gas 
concentration and global average temperature is the result of a relatively long history of 
research (see e.g. Edwards 2010), during which the other dimensions of quality were 
relevant.  
 
We also note that while the dimensions are largely independent, there are some connections 
among them. Furthermore, the nature of the dimensions is such that to obtain an overall 
assessment of quality we cannot simply average across them (see the theory example above). 
The extent to which overall quality is satisfied will be dependent on the specific cases for 
which it is assessed. Once the assessment has been completed, the user can decide whether 
the information is of sufficient quality to satisfy her needs. 
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Nevertheless, we believe that our framework is an important starting point that can have 
broad applicability: the framework is intended to be used as a guide for scientists and for 
decision makers interested in using such information. For example, a decision maker may use 
the framework to realize that different types of evidence are needed for the information to 
satisfy completeness. When exploring a climate service portal, the decision maker can assess 
the extent to which this dimension is satisfied by reading a nontechnical summary that 
explains the methods used by the climate service provider. The nontechnical summary, 
however, also needs to satisfy the transparency dimension. It needs to reveal the assumptions 
and limitations of the information, and to do so to a satisfactory degree it needs to be 
mediated by a diverse range of experts. The framework can also therefore be a useful 
normative framework for scientists who produce regional climate information that is intended 
to inform decision-making on adapting to a changing climate.   
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Fig. 1 Typology of evidence that can be used to support knowledge claims about future 
climate (top box) and selected ways in which knowledge claims about future climate can be 
presented (bottom box). The blue triangle indicates that relation between the evidence and the 
statement about future regional climate that contributes to the quality of knowledge about 
future regional climate.   
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change: A Bayesian analysis 
of multimodel simulations. 

Geophys. Res. Letters 
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future climate 

 
Qualitative statement: Small changes in 

large scale atmospheric dynamics can lead 
to large changes in regional climate in 

some regions and very small or no 
changes in other regions. 

Probabilistic projection of 
precipitation change at 

seasonal and regional scales. 
22 regions, under IPCC SRES 
A2 and B2 scenario for DJF 
and JJA. The information is 

presented in boxplots for 
precipitation change (as 

percentage) in each region 

Evidence 

Expert judgment of atmospheric scientists 
on effects of synoptic features of climate 

on region of expertise, both for winter and 
summer, to build "scenarios", where 

scenarios are possible futures assuming a 
more or less equivalent of doubling CO2. 

 
NCEP reanalysis data. 

 
Available model output found in the 

literature: mostly (but not exclusively) 
AGCM output from NASA Goddard 

Institute for Space Studies and NOAA 
Geophysical Fluid Dynamics Laboratory. 

Precipitation data from the 
observational dataset from the 
Climatic Research Unit (CRU) 
of the University of East 
Anglia (New et al. 1999, 2000) 
aggregated in seasonal and 
regional 30 year means (1961-
1990). 

 
Precipitation data from multi-
model ensemble output of 9 

AOGCMs aggregated in 
seasonal and regional 30 year 

means (2070-2099) 

Relationship 
between 

evidence and 
statement 

Experts describe how synoptic features 
affect the seasonal cycle of regional 

precipitation and temperature. Experts 
then evaluate how the synoptic features 

and its relationship to regional 
precipitation and temperature may change 
in light of changes in GHG concentrations 

(“scenarios”). These scenarios for 
particular regions are subsequently 

compared with reanalysis data and with 
relevant AGCM output found in the 

literature. 

 
Bayesian analysis: Model 

output and observational data 
is used to update priors 

(uniform distributions) to 
posteriors. The joint posterior 
probabilities are approximated 
through Markov chain Monte 

Carlo simulation. 
Posteriors are weighted by 
dividing by a measure of 
natural variability. The 
percentage precipitation 

change and the derived new 
values of natural variability are 

calculated. 
Model independence is 
calculated by estimating 
“model bias” and “model 
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convergence” based on the 
Reliability ensemble average 
(REA) method of Giorgi and 

Mearns (2002). 
Assumption: ensemble average 

of projections is “best 
approximation” to truth and 
bias is deviation of any one 

projection from the ensemble 
average. 

Graphical 
representation 

of the statement 
or estimate 

 

 
This image shows how the current 

position of large scale features such as the 
wintertime polar and subtropical jet 
stream (thick solid line) can change 

location under a first guess climate change 
scenario (thick dashed line). Changes in 

location of large scale features influences 
regional climate. 

 
Probabilistic distribution of 

mean precipitation change for 
different regions for DJF 

(yellow/top) and JJA 
(grey/bottom), averaged over 

the A2 and B2 scenarios. 
 
Table 1. Statements or estimates about future regional climate of Risbey et al. (2002) and 

Tebaldi et al. (2004), the evidence used for these statements, the relationship between the 
statements or estimates and the graphical representation of the information presented in 
these papers. 

 
 


