Belief models
A very general theory of aggregation

Seamus Bradley

University of Leeds

May 14, 2019
Our epistemic attitudes are characterised largely by a few general concepts:

▶ Informativeness
Our epistemic attitudes are characterised largely by a few general concepts:

- Informativeness
- Coherence
Our epistemic attitudes are characterised largely by a few general concepts:

- Informativeness
- Coherence
- Closeness
Our epistemic attitudes are characterised largely by a few general concepts:

- Informativeness
- Coherence
- Closeness

My plan is to show how far we can get with just these abstract ideas.
The very general theory of “Belief Models”\(^1\) provides a neat generalisation of (part of) AGM belief revision theory.

The very general theory of “Belief Models”1 provides a neat generalisation of (part of) AGM belief revision theory.

My plan is to show that the same sort of generalisation can be applied to “merging operators”2 for aggregating (propositional) knowledge bases.

Belief models

The recipe
 AGM expansion
 AGM revision
 Merging operators

Cooking up aggregation rules
Belief models

The recipe
 AGM expansion
 AGM revision
 Merging operators

Cooking up aggregation rules
Consider the structure of sets of sentences of a propositional logic.

Ordering Sets of sentences are (partially) ordered by the subset relation.
Consider the structure of sets of sentences of a propositional logic.

Ordering Sets of sentences are (partially) ordered by the subset relation.

Lattice structure For any pair of sets of sentences A, B, there is a set of sentences that is the least upper bound $A \lor B$, and another that is greatest lower bound $A \land B$.
Some facts about sets of sentences

Consider the structure of sets of sentences of a propositional logic.

Ordering Sets of sentences are (partially) ordered by the subset relation.

Lattice structure For any pair of sets of sentences A, B, there is a set of sentences that is the least upper bound $A \lor B$, and another that is greatest lower bound $A \land B$.

Coherent substructure Some sets of sentences have the further property of being logically consistent and closed under consequence. Intersections of such sets also have this property.
Consider the structure of sets of sentences of a propositional logic.

Ordering Sets of sentences are (partially) ordered by the subset relation.

Lattice structure For any pair of sets of sentences \(A, B \), there is a set of sentences that is the least upper bound \(A \lor B \), and another that is greatest lower bound \(A \land B \).

Coherent substructure Some sets of sentences have the further property of being logically consistent and closed under consequence. Intersections of such sets also have this property.

Top The set of all sentences – the top of the ordering – is not coherent.
Lower previsions provide a general model of uncertainty. They are a generalisation of probability theory.
Lower previsions provide a general model of uncertainty. They are a generalisation of probability theory.

Weaken the premises of the betting argument for probabilism, to allow bettors to have different buying and selling prices, and you get lower previsions.
Lower previsions provide a general model of uncertainty. They are a generalisation of probability theory.

Weaken the premises of the betting argument for probabilism, to allow bettors to have different buying and selling prices, and you get lower previsions.

Coherent lower previsions are very tightly linked to non-empty closed convex sets of probability functions.
Lower previsions provide a general model of uncertainty. They are a generalisation of probability theory.

Weaken the premises of the betting argument for probabilism, to allow bettors to have different buying and selling prices, and you get lower previsions.

Coherent lower previsions are very tightly linked to non-empty closed convex sets of probability functions.

Lower probabilities (lower previsions restricted to events) are superadditive but not necessarily additive: $L(X \text{ or } Y) \geq L(X) + L(Y)$ for incompatible X, Y.
Some facts about lower previsions

Ordering Lower previsions are partially ordered by pointwise dominance. \(L \preceq L' \) iff for all \(x \), \(L(x) \leq L'(x) \).
Some facts about lower previsions

Ordering Lower previsions are partially ordered by pointwise dominance. $L \preceq L'$ iff for all x, $L(x) \leq L'(x)$.

Lattice structure For any pair of lower previsions, there is a lower prevision that is the least upper bound and another that is the greatest lower bound.
Some facts about lower previsions

Ordering Lower previsions are partially ordered by pointwise dominance. $L \preceq L'$ iff for all x, $L(x) \leq L'(x)$.

Lattice structure For any pair of lower previsions, there is a lower prevision that is the least upper bound and another that is the greatest lower bound.

Coherent substructure Some lower previsions have the further property of being coherent: they avoid sure loss. Pointwise minima of such lower previsions share this property.
Some facts about lower previsions

Ordering Lower previsions are partially ordered by pointwise dominance. $L \preceq L'$ iff for all x, $L(x) \leq L'(x)$.

Lattice structure For any pair of lower previsions, there is a lower prevision that is the least upper bound and another that is the greatest lower bound.

Coherent substructure Some lower previsions have the further property of being coherent: they avoid sure loss. Pointwise minima of such lower previsions share this property.

Top The lower prevision that assigns ∞ to all gambles – the top of the structure – is not coherent.
Let \mathbf{S} be a set of belief models, partially ordered by \preceq (read as “is less informative than”), such that $\langle \mathbf{S}, \preceq \rangle$ is a complete lattice.
Let \mathbf{S} be a set of belief models, partially ordered by \preceq (read as “is less informative than”), such that $\langle \mathbf{S}, \preceq \rangle$ is a complete lattice.

Let $\mathbf{C} \subseteq \mathbf{S}$ be the subset of coherent belief models, and stipulate that \mathbf{C} is closed under arbitrary non-empty infima.
Let S be a set of *belief models*, partially ordered by \preceq (read as “is less informative than”), such that $\langle S, \preceq \rangle$ is a complete lattice.

Let $C \subseteq S$ be the subset of *coherent* belief models, and stipulate that C is closed under arbitrary non-empty infima.

In particular, $1_S \not\in C$.
Let \mathcal{S} be a set of belief models, partially ordered by \preceq (read as “is less informative than”), such that $\langle \mathcal{S}, \preceq \rangle$ is a complete lattice.

Let $\mathcal{C} \subseteq \mathcal{S}$ be the subset of coherent belief models, and stipulate that \mathcal{C} is closed under arbitrary non-empty infima.

In particular, $1_\mathcal{S} \not\in \mathcal{C}$.

$\langle \mathcal{S}, \mathcal{C}, \preceq \rangle$ is called a belief structure.
Lattice structure

\[
\begin{align*}
\text{lattice structure} & \\
\downarrow & \\
& \text{representation}
\end{align*}
\]
Let $\overline{C} = C \cup \{1_s\}$, and define:

$$\operatorname{Cl}_S(b) = \inf\{c \in \overline{C}, b \preceq c\}$$
Closure for sets of sentences

\{ A, B, C, A \land B, \neg (A \land B) \rightarrow A \land B, \ldots \}

\{ A, B, A \land B, \neg (A \land B) \rightarrow A \land B, \ldots \}

\{ A, B \}

\{ \neg (A \land B) \rightarrow A \land B \}

\{ A, B, A \land B, \neg (A \land B) \rightarrow A \land B, \ldots \}
Examples of belief structures

- Propositional logic (with \subseteq, and Cn)
Examples of belief structures

- Propositional logic (with \subseteq, and Cn)
- Lower previsions (with pointwise dominance and natural extension)
Examples of belief structures

- Propositional logic (with \subseteq, and Cn)
- Lower previsions (with pointwise dominance and natural extension)
- Modal logics and other nonstandard logics with well-behaved consequence operator
Examples of belief structures

- Propositional logic (with \(\subseteq \), and \(Cn \))
- Lower previsions (with pointwise dominance and natural extension)
- Modal logics and other nonstandard logics with well-behaved consequence operator
- Ranking functions
Examples of belief structures

- Propositional logic (with \subseteq, and Cn)
- Lower previsions (with pointwise dominance and natural extension)
- Modal logics and other nonstandard logics with well-behaved consequence operator
- Ranking functions
- Sets of desirable gambles, choice functions...
Examples of belief structures

▶ Propositional logic (with \subseteq, and Cn)
▶ Lower previsions (with pointwise dominance and natural extension)
▶ Modal logics and other nonstandard logics with well-behaved consequence operator
▶ Ranking functions
▶ Sets of desirable gambles, choice functions...
▶ Preference relations, comparative confidence relations?
Belief models

The recipe
 AGM expansion
 AGM revision
 Merging operators

Cooking up aggregation rules
Belief models

The recipe
AGM expansion
AGM revision
Merging operators

Cooking up aggregation rules
We have a propositional logic \mathcal{L}, and use a set of sentences K to represent the beliefs of an agent. The agent beliefs $X \in \mathcal{L}$ just in case $X \in K$. Of particular interest are those agents whose belief set K is consistent, and closed under entailment. We can provide some axioms for straightforward learning A given belief set K, such that $K + A$ can be characterised.
We have a propositional logic \mathcal{L}, and use a set of sentences K to represent the beliefs of an agent. The agent beliefs $X \in \mathcal{L}$ just in case $X \in K$.

Of particular interest are those agents whose belief set K is consistent, and closed under entailment.
We have a propositional logic \mathcal{L}, and use a set of sentences K to represent the beliefs of an agent. The agent beliefs $X \in \mathcal{L}$ just in case $X \in K$.

Of particular interest are those agents whose belief set K is consistent, and closed under entailment.

We can provide some axioms for straightforward learning A given belief set K, such that K_A^+ can be characterised.
Belief model expansion

Axioms for Expansion \rightarrow Characterisation

PL
Belief model expansion

Axioms for Expansion

BM

Axioms for Expansion

PL

Characterisation
Belief model expansion

Axioms for Expansion

Characterisation

BM

Axioms for Expansion

Characterisation

PL
Belief model expansion

Axioms for Expansion \rightarrow Characterisation

BM

PL

Axioms for Expansion \rightarrow Characterisation
This recipe is quite generalisable: take a result framed in the theory of propositional logic, and (if you’re lucky) it will also hold in some version of the belief models framework.
Belief models

The recipe
- AGM expansion
- AGM revision
- Merging operators

Cooking up aggregation rules
Consider the maximal consistent sets of sentences for a propositional logic. We can identify these with the set of states.
Consider the maximal consistent sets of sentences for a propositional logic. We can identify these with the set of states.

Let $\mathbf{M} = \{ m \in \mathbf{C} : \text{For all } c \in \mathbf{C}, m \preceq c \Rightarrow m = c \}$

I suspect that this property can be weakened, but that is future work.
Consider the maximal consistent sets of sentences for a propositional logic. We can identify these with the set of states.

Let \(M = \{ m \in C : \text{For all } c \in C, m \preceq c \Rightarrow m = c \} \)

Call a belief structure a \textit{strong} belief structure, when, for all \(c \in C \),
\(c = \inf \{ m \in M, c \preceq m \} \).
Consider the maximal consistent sets of sentences for a propositional logic. We can identify these with the set of states.

Let $\mathbf{M} = \{ m \in \mathbf{C} : \text{For all } c \in \mathbf{C}, m \preceq c \Rightarrow m = c \}$

Call a belief structure a strong belief structure, when, for all $c \in \mathbf{C}$, $c = \inf\{ m \in \mathbf{M}, c \preceq m \}$.

I suspect that this property can be weakened, but that is future work.
Lattice structure

\[a \rightarrow b \quad a \leftrightarrow b' \quad a' \rightarrow b \quad a' \leftrightarrow b' \]

\[a \text{ or } b \quad b \rightarrow a \quad a \rightarrow b \quad a' \text{ or } b' \]
For strong belief structures, we can do for AGM revision what we just did for expansion!
For strong belief structures, we can do for AGM revision what we just did for expansion!

Interestingly, contraction seems more recalcitrant: de Cooman does not provide a “belief structure” version of contraction.
Belief model revision

Axioms for Revision

Characterisation

PL
Belief model revision

Axioms for Revision

BM+Strong

Axioms for Revision

PL

Characterisation
Belief model revision

Axioms for Revision

Characterisation

Axioms for Revision

Characterisation

BM+Strong

PL
Belief model revision

Axioms for Revision → Characterisation

BM + Strong

Axioms for Revision → Characterisation

PL
Belief models

The recipe
 AGM expansion
 AGM revision
 Merging operators

Cooking up aggregation rules
In what follows we will also need the following property:

For distinct \(a, b, c \in M \), \(c \nsubseteq a \land b \) \hspace{1cm} (*)

This is a property that all distributive lattices satisfy, but I suspect this property is weaker than distributivity.
Say you have a group of people, each with their own – possibly conflicting – beliefs. How best to aggregate their beliefs?
Say you have a group of people, each with their own – possibly conflicting – beliefs. How best to aggregate their beliefs?

Consider a multiset Ψ of belief models.
Say you have a group of people, each with their own – possibly conflicting – beliefs. How best to aggregate their beliefs?

Consider a multiset Ψ of belief models.

We want a function that maps Ψ to some belief set, subject to some constraints:

- It must satisfy some independent constraints (including consistency)
- It must be “as close” to the opinions of the members of Ψ as possible
- It must treat the different members of Ψ “fairly”
The (propositional logic) literature on merging operators provides two main ways to develop a merging operator.
The (propositional logic) literature on merging operators provides two main ways to develop a merging operator.

One way is to construct a Δ on the basis of a sort of “entrenchment relation” over \mathcal{M}.
The (propositional logic) literature on merging operators provides two main ways to develop a merging operator.

One way is to construct a Δ on the basis of a sort of “entrenchment relation” over M.

Alternatively, you can construct a Δ using a “distance” over M and a method of aggregating distances.
If Δ is a merging operator, then define $K_\mu^* = \Delta_\mu(K)$. This is AGM revision.
One approach to constructing merging operators is to start from a distance between maximal belief models: $D(w, w')$.

Define a distance between worlds and belief sets:

$$D(w, \phi) = \min_{\phi \preceq w'} \{ D(w, w') \}$$

Define a distance between worlds and multisets of belief sets:

$$D(w, \Psi) = \sum_{\phi \in \Psi} D(w, \phi)$$

The aggregate by minimising that distance.
Distance based merging

One approach to constructing merging operators is to start from a distance between maximal belief models: $D(w, w')$.

Define a distance between worlds and belief sets:

$$D(w, \phi) = \min_{\phi \subseteq w'} \{D(w, w')\}$$
One approach to constructing merging operators is to start from a distance between maximal belief models: $D(w, w')$.

Define a distance between worlds and belief sets:

$$D(w, \phi) = \min_{\phi \leq w'} \{D(w, w')\}$$

Define a distance between worlds and multisets of belief sets:

$$D(w, \Psi) = \sum_{\phi \in \Psi} D(w, \phi)$$

The aggregate by minimising that distance.
Belief models

The recipe
 AGM expansion
 AGM revision
 Merging operators

Cooking up aggregation rules
Belief models make new knowledge

Axioms for BM + Specifics → Results

BM(+...)

Belief models make new knowledge

Axioms for BM + Specifics → Results

Satisfies

Formal model of interest

System

BM(+)
Belief models make new knowledge

Axioms for BM + Specifics \rightarrow Results

Satisfies

Formal model of interest \rightarrow New stuff!

System
A worked example

Start with the so-called “drastic distance”:

\[
D_d(w, w') = \begin{cases}
0 & \text{if } w = w' \\
1 & \text{otherwise}
\end{cases}
\]

Then we minimise that: meaning, we pick the maximal (w.r.t cardinality) consistent subsets.
A worked example

Start with the so-called “drastic distance”:

\[D_d(w, w') = \begin{cases}
0 & \text{if } w = w' \\
1 & \text{otherwise}
\end{cases} \]

\[D_d(w, \phi) = \min_{\phi \leq w'} \{ D_d(w, w') \} = \begin{cases}
0 & \text{if } w \in M(\phi) \\
1 & \text{otherwise}
\end{cases} \]
A worked example

Start with the so-called “drastic distance”:

\[D_d(w, w') = \begin{cases}
0 & \text{if } w = w' \\
1 & \text{otherwise}
\end{cases} \]

\[D_d(w, \phi) = \min_{\phi \leq w'} \{ D_d(w, w') \} = \begin{cases}
0 & \text{if } w \in M(\phi) \\
1 & \text{otherwise}
\end{cases} \]

\[D_d(w, \Psi) = \sum D_d(w, \phi) = \text{The number of } \phi \in \Psi \text{ that } w \text{ is not in.} \]

Then we minimise that: meaning, we pick the maximal (w.r.t cardinality) consistent subsets.
Discontinuous merging?
Other ways to merge

What if we use, say, Euclidean distance rather than drastic distance?
Other ways to merge

What if we use, say, Euclidean distance rather than drastic distance?

Then we are minimising the sum of minimum distances.
One approach to constructing merging operators is to start from a distance between maximal belief models: \(D(w, w') \).

Define a distance between worlds and belief sets:

\[
D(w, \phi) = \min_{\phi \subseteq w'} \left\{ D(w, w') \right\}
\]

Define a distance between worlds and multisets of belief sets:

\[
D(w, \Psi) = \sum_{\phi \in \Psi} D(w, \phi)
\]

The aggregate by minimising that distance.
Other ways to merge

What if we use, say, Euclidean distance rather than drastic distance?

Then we are minimising the sum of minimum distances.

This often yields aggregation more “precise” than you might want.
Weird precision?
Respect imprecision
What happens to precise input?

What if each lower prevision in Ψ is, in fact, a linear prevision (i.e. a precise probability)?
What if each lower prevision in Ψ is, in fact, a linear prevision (i.e. a precise probability)?

For the drastic distance: you get the convex hull of Ψ (unless there are duplicates).
What if each lower prevision in Ψ is, in fact, a linear prevision (i.e. a precise probability)?

For the drastic distance: you get the convex hull of Ψ (unless there are duplicates).

For Euclidean distance: you get unweighted linear pooling.
Convex combinations of coherent lower previsions are coherent, so how about just aggregate by linear pooling?
Convex combinations of coherent lower previsions are coherent, so how about just aggregate by linear pooling?

What about other distances? Or distance aggregation other than \(\sum \)?
Open questions

- Convex combinations of coherent lower previsions are coherent, so how about just aggregate by linear pooling?
- What about other distances? Or distance aggregation other than \sum?
- What about impossibility theorems?
Convex combinations of coherent lower previsions are coherent, so how about just aggregate by linear pooling?

What about other distances? Or distance aggregation other than \(\sum \)?

What about impossibility theorems?

How weak is the additional property? Can we weaken “strongness” to something infima of maximal ideals?
Belief structures gives us a great way to easily import and generalise a bunch of work done using propositional logic.

More generally, it’s remarkable how rich and interesting a theory of rational attitudes we can extract from just the concepts of Informativeness, Coherence and Closeness.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 792292.
Bonus material

- AGM expansion, translated
- Merging operator
- Syncretic assignment
Axioms

<table>
<thead>
<tr>
<th>AGM</th>
<th>Belief models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call K_A^+ the expansion of K by (consistent) A.</td>
<td>Call $E(b, c)$ the expansion operator for learning c on having beliefs b.</td>
</tr>
<tr>
<td>1. K_A^+ is a belief set (i.e. closed under entailment and consistent)</td>
<td>1. $E(b, c) \in \overline{C}$</td>
</tr>
</tbody>
</table>
AGM

Call K_A^+ the expansion of K by (consistent) A.

1. K_A^+ is a belief set (i.e. closed under entailment and consistent)
2. $A \in K_A^+$

Belief models

Call $E(b, c)$ the expansion operator for learning c on having beliefs b.

1. $E(b, c) \in \overline{C}$
2. $c \preceq E(b, c)$
Axioms

AGM

Call K^+_A the expansion of K by (consistent) A.

1. K^+_A is a belief set (i.e. closed under entailment and consistent)
2. $A \in K^+_A$
3. $K \subseteq K^+_A$

Belief models

Call $E(b, c)$ the expansion operator for learning c on having beliefs b.

1. $E(b, c) \in \overline{C}$
2. $c \preceq E(b, c)$
3. $b \preceq E(b, c)$
<table>
<thead>
<tr>
<th>Axioms</th>
</tr>
</thead>
</table>

AGM

Define K_A^+ as the expansion of K by (consistent) A.

1. K_A^+ is a belief set (i.e. closed under entailment and consistent)
2. $A \in K_A^+$
3. $K \subseteq K_A^+$
4. If $A \in K$ then $K_A^+ = K$

Belief models

Define $E(b, c)$ as the expansion operator for learning c on having beliefs b.

1. $E(b, c) \in \overline{C}$
2. $c \preceq E(b, c)$
3. $b \preceq E(b, c)$
4. If $c \preceq b$ then $E(b, c) = b$
Axioms

AGM

Call K_A^+ the expansion of K by (consistent) A.

1. K_A^+ is a belief set (i.e. closed under entailment and consistent)
2. $A \in K_A^+$
3. $K \subseteq K_A^+$
4. If $A \in K$ then $K_A^+ = K$
5. If $K \subseteq H$ then $K_A^+ \subseteq H_A^+$

Belief models

Call $E(b, c)$ the expansion operator for learning c on having beliefs b.

1. $E(b, c) \in \overline{C}$
2. $c \preceq E(b, c)$
3. $b \preceq E(b, c)$
4. If $c \preceq b$ then $E(b, c) = b$
5. If $b \preceq d$ then $E(b, c) \preceq E(d, c)$
Axioms

AGM

Call K_A^+ the expansion of K by (consistent) A.

1. K_A^+ is a belief set (i.e. closed under entailment and consistent)
2. $A \in K_A^+$
3. $K \subseteq K_A^+$
4. If $A \in K$ then $K_A^+ = K$
5. If $K \subseteq H$ then $K_A^+ \subseteq H_A^+$
6. For all K and A, K_A^+ is the smallest belief set satisfying the above conditions

Belief models

Call $E(b, c)$ the expansion operator for learning c on having beliefs b.

1. $E(b, c) \in \overline{C}$
2. $c \preceq E(b, c)$
3. $b \preceq E(b, c)$
4. If $c \preceq b$ then $E(b, c) = b$
5. If $b \preceq d$ then $E(b, c) \preceq E(d, c)$
6. $E(b, -)$ is the least informative of all the operators satisfying the above
AGM
If K_A^+ satisfies the above conditions, then
$$K_A^+ = Cn(K \cup \{A\}).$$

Belief models
If E satisfies the above, then
$$E(b, c) = Cl_S(\sup\{b, c\}).$$
Call $\Delta(\Psi, \mu)$ – or $\Delta_\mu(\Psi)$ – a merging operator if Ψ is a multiset of belief models, and μ is a belief model representing the constraints the aggregate belief must satisfy, and Δ satisfies:

- $\mu \preceq \Delta_\mu(\Psi)$
- If μ is consistent then $\Delta_\mu(\Psi)$ is consistent
- If $\bigvee \Psi \vee \mu$ is consistent then $\Delta_\mu(\Psi) = \bigvee \Psi \vee \mu$
- If $\mu \preceq \phi_1$ and $\mu \preceq \phi_2$ then $\Delta_\mu(\phi_1 \sqcup \phi_2) \vee \phi_1$ is consistent if and only if $\Delta_\mu(\phi_1 \sqcup \phi_2) \vee \phi_2$
- $\Delta_\mu(\Psi_1 \sqcup \Psi_2) \preceq \Delta_\mu(\Psi_1) \vee \Delta_\mu(\Psi_2)$
- If $\Delta_\mu(\Psi) \vee \Delta_\mu(\Psi_2)$ is consistent then,
 $\Delta_\mu(\Psi_1) \vee \Delta_\mu(\Psi_2) \preceq \Delta_\mu(\Psi_1 \sqcup \Psi_2)$
- $\Delta_{\mu_1 \vee \mu_2}(\psi) \preceq \Delta_{\mu_1}(\psi) \vee \mu_2$
- If $\Delta_{\mu_1}(\Psi) \vee \mu_2$ is consistent then $\Delta_{\mu_1}(\Psi) \vee \mu_2 \preceq \Delta_{\mu_1 \vee \mu_2}(\psi)$
A *syncretic assignment* is an assignment of a total preorder \(\trianglelefteq_\Psi \) to each multiset \(\Psi \), such that:

- For each \(\Psi \), \(\trianglelefteq_\Psi \) is a total order on \(M \).
- If \(a \in M(\bigvee \Psi) \) and \(b \in M(\bigvee \Psi) \) then \(a \trianglelefteq_\Psi b \).
- If \(a \in M(\bigvee \Psi) \) but \(b \not\in M(\bigvee \Psi) \) then \(a \triangleleft_\Psi b \).
- For all \(a \in M(\phi) \) there is some \(b \in M(\phi') \) such that \(b \trianglelefteq_{\phi \sqcup \phi'} a \).
- If \(a \trianglelefteq_{\Psi_1} b \) and \(a \trianglelefteq_{\Psi_2} b \) then \(a \trianglelefteq_{\Psi_1 \sqcup \Psi_2} b \).
- If \(a \triangleleft_{\Psi_1} b \) and \(a \triangleleft_{\Psi_2} b \) then \(a \triangleleft_{\Psi_1 \sqcup \Psi_2} b \).
- \(\trianglelefteq_\Psi \) is *smooth*, meaning for all \(\mu \), for all \(m \in M(\mu) \), if \(m \) is not minimal with respect to \(\trianglelefteq_\Psi \) then there is an \(m' \in M(\mu) \) such that \(m' \) is minimal and \(m' \triangleleft_\Psi m \).

\(\Delta \) is a merging operator iff there is a syncretic assignment such that \(\Delta_\mu(\Psi) = \inf_{\leq} \min_{\trianglelefteq_\Psi} \{ M(\mu) \} \).